閱讀 | 訂閱
閱讀 | 訂閱
今日要聞

機(jī)載激光點云與影像聯(lián)合測圖的技術(shù)進(jìn)展和趨勢

cici 來源:地理信息世界2017-11-20 我要評論(0 )   

本文通過對激光點云與光學(xué)影像聯(lián)合測圖所涵蓋的關(guān)鍵技術(shù)進(jìn)展進(jìn)行分析,重點指出目前激光掃描儀進(jìn)行測繪生產(chǎn)所面臨的主要挑戰(zhàn)。

       本文通過對激光點云與光學(xué)影像聯(lián)合測圖所涵蓋的關(guān)鍵技術(shù)進(jìn)展進(jìn)行分析,重點指出目前激光掃描儀進(jìn)行測繪生產(chǎn)所面臨的主要挑戰(zhàn)。結(jié)合激光掃描技術(shù)與光學(xué)影像融合后的數(shù)據(jù)特點與實際行業(yè)生產(chǎn)需求,簡要探討了未來激光測圖技術(shù)發(fā)展的趨勢及新產(chǎn)品體系構(gòu)建設(shè)想,以期對激光掃描軟硬件系統(tǒng)在相關(guān)行業(yè)應(yīng)用推廣中具有一定參考意義。

【關(guān)鍵詞】激光掃描儀;組合對地觀測;新4D產(chǎn)品;實景模型;三維DLG

從20世紀(jì)90年代開始,機(jī)載激光掃描儀開始在國際上嶄露頭角,出現(xiàn)在林業(yè)、地形測繪、工程測量等領(lǐng)域。機(jī)載激光雷達(dá)(Light Detection And Ranging,簡稱LiDAR)是一種精度高、耗時少、成本低的新型航空遙感傳感器,由激光掃描儀、全球定位系統(tǒng)(GPS)和慣性導(dǎo)航設(shè)備(IMU)3部分組成,可以直接快速地獲取地球表面的三維空間信息。

確切來講,最初機(jī)載LiDAR系統(tǒng)在測繪中的應(yīng)用僅限于制作高精度數(shù)字高程模型,因此,如何針對激光點云進(jìn)行地面點與非地面點精確二義分類,就在相當(dāng)長一段時間內(nèi)成為該領(lǐng)域的研究熱點。但隨著激光掃描儀硬件系統(tǒng)技術(shù)指標(biāo)的升級,以及載荷平臺的多樣化發(fā)展,人們開始著手考慮將激光掃描儀與其他類傳感器進(jìn)行集成,實現(xiàn)組合對地觀測應(yīng)用。如:①電力線路安全巡檢不僅需要獲取電力線路走廊幾何位置信息,而且需要對電力線的異常發(fā)熱區(qū)域進(jìn)行探測,還需對絕緣子放電異常進(jìn)行有效診斷,因此,電力線路巡檢傳感器平臺可能需要同時集成可見光數(shù)碼相機(jī)、激光掃描儀、熱紅外相機(jī)、紫外相機(jī)等多種傳感器;②森林火災(zāi)應(yīng)急測繪為了能對災(zāi)情進(jìn)行定量、合理的評估,則同時需要集成熱紅外相機(jī)以及高分辨率可見光數(shù)碼相機(jī);③在林業(yè)遙感應(yīng)用中,多采用LiDAR波形特征提取生物量信息,而同時需借助可見光或近紅外光譜數(shù)據(jù)提取樹木分類信息等;④在日益增長的精細(xì)三維建模應(yīng)用中,依靠高密度激光雷達(dá)點云獲取實體幾何結(jié)構(gòu)信息,而光學(xué)數(shù)碼相機(jī)則能較好地獲取實體表面紋理信息,因此,滿足該項應(yīng)用需求至少需集成激光雷達(dá)掃描儀與多視角可見光數(shù)碼相機(jī)等。

鑒于激光雷達(dá)點云與影像所獲取的空間地理信息數(shù)據(jù)能廣泛地作為其他行業(yè)應(yīng)用的基礎(chǔ)性、框架性數(shù)據(jù)支撐。因此,通過從各式各樣的行業(yè)應(yīng)用中凝練出激光雷達(dá)點云與影像聯(lián)合測圖所涉及的通用技術(shù)方法是非常必要的。論文重點從通用數(shù)據(jù)后處理技術(shù)與新4D產(chǎn)品體系建設(shè)等兩個共性方面進(jìn)行闡述,以期對激光掃描軟硬件系統(tǒng)在相關(guān)行業(yè)應(yīng)用推廣中具有一定參考意義。

1 點云與影像聯(lián)合測圖進(jìn)展

從數(shù)據(jù)處理流程角度來講,點云與影像聯(lián)合制圖技術(shù),主要包含3個核心部分,即:點云數(shù)據(jù)獲取系統(tǒng)的集成檢校與數(shù)據(jù)配準(zhǔn)技術(shù)、點云分類與濾波技術(shù),以及精細(xì)建模與矢量制圖技術(shù),具體闡述如下:

1.1 集成檢校與數(shù)據(jù)配準(zhǔn)技術(shù)

機(jī)載LiDAR系統(tǒng)工作時,由POS系統(tǒng)提供激光掃描儀的實時位置和姿態(tài)數(shù)據(jù),結(jié)合激光掃描儀激光束的角度和測距信息計算地面點的物方三維坐標(biāo)。其中,由激光掃描儀坐標(biāo)系到POS系統(tǒng)坐標(biāo)系之間的轉(zhuǎn)換需要獲得激光掃描儀與POS系統(tǒng)之間的安置參數(shù),包括偏心分量和安置角。隨著設(shè)備的長期使用,安置參數(shù)會發(fā)生變化,因此需要對其進(jìn)行檢校。傳統(tǒng)的檢校方式是,在多條帶的LiDAR點云覆蓋范圍內(nèi)人工測量若干地面控制點,然后經(jīng)過條帶平差計算檢校參數(shù)。在缺乏控制點時,可根據(jù)多條帶點云數(shù)據(jù)之間提取并匹配的平面特征建立平差檢校模型,計算檢校參數(shù)。在系統(tǒng)搭載數(shù)碼相機(jī)時,數(shù)碼相機(jī)與POS系統(tǒng)之間的安置參數(shù)檢??刹捎煤娇沼跋褡詸z校區(qū)域網(wǎng)平差的方式計算。

機(jī)載LiDAR點云數(shù)據(jù)與航空影像的集成應(yīng)用中,需要解決多條帶機(jī)載LiDAR點云之間的配準(zhǔn)問題,以及機(jī)載LiDAR點云與航空影像之間的配準(zhǔn)問題。若系統(tǒng)原始觀測值(POS航跡、激光掃描儀測距和測角數(shù)據(jù)、激光點和影像獲取時刻等)已知,通過系統(tǒng)檢校可解決配準(zhǔn)問題;反之,需要采用數(shù)據(jù)驅(qū)動的方法解決配準(zhǔn)問題。

機(jī)載LiDAR點云條帶之間配準(zhǔn)(成為LiDAR條帶平差),通常采用旋轉(zhuǎn)和平移6參數(shù)剛體變換模型表達(dá)點云條帶之間的坐標(biāo)變換,有時也加上尺度參數(shù)。LiDAR條帶平差的核心是點云條帶間連接基元的獲取。如采用三維最鄰近點的迭代最鄰近點(Iterative ClosestPoint, ICP)配準(zhǔn)算法,最小法向距離的配準(zhǔn)算法,最小高程差的配準(zhǔn)算法,基于平面特征的配準(zhǔn)方法以及基于表面匹配的配準(zhǔn)方法。其中最小高程法無法處理平面坐標(biāo)誤差,基于平面特征的方法只適合于城市地區(qū),其他方法的適應(yīng)性較強(qiáng)。當(dāng)前的大多數(shù)條帶平差方法都需要較好的初值,不過由于機(jī)載LiDAR點云條帶本身的坐標(biāo)誤差不大,良好的初值常常很容易獲得。

LiDAR點云與光學(xué)影像之間的配準(zhǔn),主要有兩類方法:基于特征的配準(zhǔn)和基于點云的配準(zhǔn)。基于特征的配準(zhǔn)方法有多種,主要是通過在LiDAR點云與光學(xué)影像間人工或自動匹配同名點、同名線特征進(jìn)行配準(zhǔn),采用的配準(zhǔn)模型主要是共線、共面方程等。在LiDAR點云中提取點、線特征可以基于LiDAR強(qiáng)度圖、LiDAR距離圖或離散LiDAR點云,同名特征的匹配測度主要有互信息、相關(guān)系數(shù)及直線間距離等。基于點云的配準(zhǔn)首先由光學(xué)影像密集匹配生成離散點云,然后采用點云與點云匹配的方法實現(xiàn)激光點云與影像匹配點云的,從而通過約束修改光學(xué)影像的方位元素實現(xiàn)兩者的配準(zhǔn),或者直接采用影像空三加密點結(jié)合法向量約束實現(xiàn)光學(xué)影像與點云的配準(zhǔn)等??傮w來說,由于LiDAR點云與光學(xué)影像為異源數(shù)據(jù),目前對于兩者配準(zhǔn)方面的研究仍將集中在對同名特征匹配困難、需要較好的初值等問題的解決方面。

1.2 高質(zhì)量濾波與分類技術(shù)

基于點云的地物自動提取方面(或分類)具有代表性的方法有:Peter Axelsson采用最小描述長度(Minimum Description Length,MDL)準(zhǔn)則對地物進(jìn)行分類,分類結(jié)果僅以離散面片形式進(jìn)行表達(dá)并交由后續(xù)建模軟件進(jìn)行處理;也有學(xué)者分別在原始點云上提取建筑物,或結(jié)合點云與光譜影像提取建筑物或樹木;也有學(xué)者嘗試基于高程紋理圖像將地面、建筑物及樹木進(jìn)行分類,或是將點云與高光譜影像結(jié)合提取建筑、樹木與草坪區(qū)域。

盡管國內(nèi)外學(xué)者針對點云信息提取這一問題不斷提出各種各樣的新方法,但是全自動地物提取仍是該領(lǐng)域的一個公共難題,需后續(xù)研究更可靠、更智能、更高效的處理方法。基于點云數(shù)據(jù)的智能信息提取方法正逐漸朝著多源數(shù)據(jù)融合的方向發(fā)展,如以高光譜影像數(shù)據(jù)輔助建筑物提取、獨立樹建模等,以及利用現(xiàn)有的基礎(chǔ)地理信息數(shù)據(jù),如DLG (Digital Line Graph)輔助進(jìn)行城市道路、綠地等專題信息提取等。

點云濾波方面具有代表性的算法大概分3類:①以形態(tài)學(xué)為基礎(chǔ)的濾波算法,該類算法通過定義一系列形態(tài)學(xué)算子進(jìn)行地面點和非地面點分離;②以點云平差為基礎(chǔ)的線性預(yù)測濾波算法,并在Inpho公司進(jìn)行產(chǎn)品化。其基本思想是:通過計算每個高程點與預(yù)測趨勢面的殘差,估計每個點的內(nèi)插權(quán)重,通過權(quán)重的改變自動分離地面點與非地面點;③以不規(guī)則三角網(wǎng)為基礎(chǔ)的漸進(jìn)加密算法,該算法以內(nèi)插三角網(wǎng)為濾波基礎(chǔ),根據(jù)一定閾值條件自動剔除非地面點,某個版本已在TerraScan中產(chǎn)品化。另外,還有一些其他針對具體地形的濾波算法就不再逐一列舉。

從總體來看,形態(tài)學(xué)濾波算法比較適合場景較為簡單的城市區(qū)域,較少應(yīng)用在地貌信息復(fù)雜的山區(qū),線性預(yù)測方法計算量較大,并且沒有針對地形特征變化進(jìn)行內(nèi)插權(quán)重的自適應(yīng)調(diào)整,而三角網(wǎng)算法也存在較為明顯的缺陷,即:當(dāng)初始地面三角網(wǎng)與地形特征相差較大時,濾波質(zhì)量顯著降低,相應(yīng)地,其他算法也只適應(yīng)有限的地形條件。同時,ISPRS (International Society for Photogrammetry and Remote Sensing)組織學(xué)者對各類濾波算法進(jìn)行比較研究,認(rèn)為:大多數(shù)濾波算法針對特定地形可以取得良好結(jié)果,沒有哪一種算法適合各種地形條件,并指出未來的濾波算法需要融合多元數(shù)據(jù)分析,分類識別等輔助手段。因此,針對不同的地形條件,相應(yīng)地調(diào)整濾波策略,并輔助有效的分類知識,將會成為未來點云濾波研究的重要發(fā)展方向。

1.3 精細(xì)建模與矢量測圖技術(shù)

采用單一三維離散點云數(shù)據(jù)生成精細(xì)化網(wǎng)格模型起源于逆向工程領(lǐng)域,算法后續(xù)的繁榮體現(xiàn)在機(jī)器視覺與計算機(jī)視覺這兩個學(xué)科分支中的三維場景曲面重構(gòu)理論。在逆向工程領(lǐng)域,由著名的Crust理論證明可知,離散點云能否恢復(fù)表面幾何拓?fù)渲貥?gòu):最關(guān)鍵影響因子在于點云的局部采樣間隔,并總結(jié)推導(dǎo)出能滿足拓?fù)渲貥?gòu)的最大采樣間隔公式。該項定理也從理論上總結(jié)或指導(dǎo)了許多三維表面重構(gòu)方法的探索思路,最常見的方法包括:帶約束條件的Delaunay表面重構(gòu)、基于局部法向投影的增量三角重構(gòu)以及Marching Cube等重建算法等。

從商業(yè)軟件精細(xì)建模結(jié)果來推斷,目前國際上大致分為三類:第一類是以擬合重建為主導(dǎo)的泊松重建理論(Poisson Reconstruction Method, PRM):如著名逆向工程領(lǐng)域的Polyworks、Geomagic studio,計算機(jī)視覺領(lǐng)域的pix4d等這類軟件的模型構(gòu)建都是采用PRM方式;第二類是以馬克科夫隨機(jī)場框架(Markov RandomField ,MRF)為基礎(chǔ)的三維Delaunay重建理論,如法國的Acute3d,PixelFactory等,這類軟件所構(gòu)建的模型比較精致,沒有節(jié)點內(nèi)插擬合誤差的引入;最后第三類則是還停留在針對地形地表建模的地圖生產(chǎn)類軟件,如國際上大部分的機(jī)載LiDAR軟件,以及國產(chǎn)攝影測量軟件系統(tǒng)等。其共同特點是構(gòu)建簡單的平面三角網(wǎng)格,然后為每一個節(jié)點附上高程屬性值即可滿足大部分生產(chǎn)制圖需求。

矢量化測圖是一類典型結(jié)構(gòu)化信息提取技術(shù),攝影測量軟件多采用立體模式下交互式量測方法,即:左右立體影像對量測同名像點,再通過空間前方交會或是三角化算法實時計算三維點坐標(biāo),最后輔助簡單的矢量編輯與符號化工具獲取地形圖,如德國Inpho,美國SSK、國產(chǎn)VirtuoZo、JX4/5等;另外還有一類機(jī)載LiDAR測圖軟件系統(tǒng)則直接在三維點云環(huán)境中,以高程、強(qiáng)度以及紋理色彩等輔助信息判讀地物輪廓,再進(jìn)行矢量線劃圖采集與編輯。值得指出的是,該類軟件一般要在AutoCAD或MicroStation等矢量編輯平臺環(huán)境下進(jìn)行二次開發(fā)而成。

總體來講,用于生產(chǎn)不同用途模型產(chǎn)品的精細(xì)建模技術(shù)與矢量測圖技術(shù),不能簡單用技術(shù)先進(jìn)性指標(biāo)來衡量比較:精細(xì)建模技術(shù)主要考慮的是模型完整性保持、建模效率、模型有效簡化等工作內(nèi)容;而矢量建模技術(shù)則主要考慮利用自動化方法識別大部分強(qiáng)特征地物,開發(fā)更為友好的半自動建模軟件實現(xiàn)等。

2 點云與影像聯(lián)合測圖趨勢

2.1 數(shù)據(jù)質(zhì)量方面

隨著硬件平臺與傳感器的高速發(fā)展,獲取高質(zhì)量的離散三維點云或是高分辨率光學(xué)數(shù)碼影像已屬于普遍現(xiàn)象。近年來,由于無人機(jī)平臺在專業(yè)或消費(fèi)領(lǐng)域的普及性應(yīng)用,催生該項技術(shù)的快速成熟。一方面單一掃描儀獲取的數(shù)據(jù)質(zhì)量在逐步提高:據(jù)最新報道無人機(jī)搭載機(jī)載LiDAR掃描儀,能獲取的最大點陣密度能達(dá)到近千點/m²,其獲取地表物體的結(jié)構(gòu)完整性也非常良好;另一方面是通過不同傳感器的數(shù)據(jù)融合提升數(shù)據(jù)質(zhì)量:①由于機(jī)載LiDAR系統(tǒng)所獲取數(shù)據(jù)主要集中在物體頂部區(qū)域,車載LiDAR系統(tǒng)獲取建筑物側(cè)面點云,兩者幾何配準(zhǔn)后能獲得相對全面的表面點云數(shù)據(jù);②在機(jī)載LiDAR點云的引導(dǎo)下,先通過對同步或異步獲取的光譜影像進(jìn)行精確配準(zhǔn),進(jìn)而采用局部稠密匹配來獲得更高質(zhì)量的表面點云。

總體來看,點云數(shù)據(jù)的密度方面還能進(jìn)一步獲得突破,甚至達(dá)到或超過光學(xué)影像分辨率,達(dá)到亞厘米級;而完整性方面,鑒于主動傳感器的波譜反射特性,地物表面的點云難免出現(xiàn)數(shù)據(jù)丟失現(xiàn)象,本文認(rèn)為通過光學(xué)影像稠密匹配結(jié)果進(jìn)行有效修補(bǔ)方式將會更為有效,成本也相對低廉,是值得學(xué)者進(jìn)一步鉆研的課題方向之一。

2.2 自動目標(biāo)識別分類方面

多年來,在測繪領(lǐng)域自動目標(biāo)識別研究一直是局限在衛(wèi)星遙感光譜影像像素分類方面,因此也出現(xiàn)了一批優(yōu)秀的軟件系統(tǒng),如美國Erdas、ENVI、加拿大PCI、德國eCognition等系統(tǒng)。但由于同物異譜,異物同譜現(xiàn)象的普遍性導(dǎo)致僅僅依賴單一來源的像素灰度信息獲取滿意的目標(biāo)識別效果非常困難。另外,光譜信息不能直接反映地物的空間屬性,單一灰度一致性也難以直接恢復(fù)物體的輪廓信息。因此,本文從以下幾個方面來建議點云與影像目標(biāo)識別分類方法的趨勢:

1)確立稠密點云在目標(biāo)識別中的重要位置,光譜數(shù)據(jù)主要作為色彩、紋理等輔助信息占據(jù)較小的比重;

2)結(jié)合已有的基礎(chǔ)地理信息數(shù)據(jù)庫,對現(xiàn)有林區(qū)、城市等復(fù)雜地形區(qū)域的點云分類結(jié)果進(jìn)行控制約束或定向優(yōu)化;

3)加大基礎(chǔ)學(xué)科開源算法庫的引入,采用機(jī)器學(xué)習(xí)的方式對地形環(huán)境或目標(biāo)特征進(jìn)行訓(xùn)練,在分類過程中不斷調(diào)整針對待識別目標(biāo)的抽象條件以達(dá)到最優(yōu)識別效果。若希望采用非監(jiān)督分類模式,應(yīng)著力加大知識樣本庫的建立工作,該數(shù)據(jù)庫健全程度應(yīng)是影響全自動識別算法執(zhí)行的首要因素。

關(guān)于前沿的無人駕駛汽車,值得指出的是:目前國外Google公司與國內(nèi)百度公司已先后推出準(zhǔn)實用化的無人駕駛汽車。無疑這項工作是人工智能成功應(yīng)用的典型案例,增強(qiáng)了人工智能領(lǐng)域科研人員的信心。但從技術(shù)角度討論,無人駕駛汽車主體識別工作在于障礙物的實時檢測、各類特征明確的已知交通標(biāo)志的動態(tài)識別,以及已知道路中心線準(zhǔn)確坐標(biāo)后的路面識別等方面。這與實現(xiàn)目標(biāo)區(qū)域的全要素地物識別之間差距還是非常大??傮w來看,全要素全自動目標(biāo)識別系統(tǒng)建設(shè)是一項非常具有挑戰(zhàn)性的工作,研究人員務(wù)必立足行業(yè)需求,全面整合全球最先進(jìn)的知識系統(tǒng)、最寶貴智力資源進(jìn)行聯(lián)合攻關(guān),方能再有所突破。

2.3 新產(chǎn)品體系建設(shè)方面

在數(shù)字?jǐn)z影測量制圖歷史上,以數(shù)字高程模型、數(shù)字正射影像、數(shù)字線劃圖、數(shù)字柵格地圖等為主導(dǎo)的4D產(chǎn)品,長期作為定型的基礎(chǔ)測繪地理信息產(chǎn)品為行業(yè)大眾所認(rèn)同。但隨著測繪遙感技術(shù)的發(fā)展,如激光雷達(dá)技術(shù)、傾斜攝影測量技術(shù)(一種近景攝影測量模式在航空中的復(fù)制,由于數(shù)據(jù)采集相對規(guī)則,其處理難度遠(yuǎn)小于近景攝影數(shù)據(jù))等新型遙感技術(shù)的進(jìn)步,催生出新的產(chǎn)品類型需求,需要布局新的產(chǎn)品體系建設(shè)。本文立足于機(jī)載激光雷達(dá)與光學(xué)影像聯(lián)合測圖技術(shù)研究經(jīng)驗,對新產(chǎn)品體系進(jìn)行理論上的梳理,以期對新產(chǎn)品體系建設(shè)具備一定借鑒意義:

1)數(shù)字表面模型(Digital Surface Model,DSM)產(chǎn)品制作工藝規(guī)范與產(chǎn)品定型工作迫在眉睫。從制作工藝來講,激光掃描儀是一種能直接獲取三維表面信息的新型傳感器,而傾斜攝影測量則是一種多角度航空攝影作業(yè)方式,后續(xù)再通過立體視覺手段進(jìn)行場景重構(gòu)。前者場景重構(gòu)速度塊,但目前成本較高,非專業(yè)領(lǐng)域推廣普及還比較困難;后者成本較低、宜于推廣,但需要較為復(fù)雜的算法計算來保證場景重構(gòu)的可用性,時效性稍有不足。兩者的共同特點是都能構(gòu)建復(fù)雜場景的精細(xì)三維模型,即目前行業(yè)大眾所熟知的三維實景建模。另外,從產(chǎn)品定型來講,數(shù)字表面模型記錄的是空間物體表面真實三維信息的數(shù)據(jù)集,其本身具備滿足航路規(guī)劃、三維導(dǎo)航、資源普查等功能需求,同時也是一切后續(xù)4D產(chǎn)品生產(chǎn)的基本源數(shù)據(jù)。

綜上,從產(chǎn)品技術(shù)角度討論,今后相當(dāng)長一段時間與數(shù)字表面模型相關(guān)主要研究工作將會聚焦在海量網(wǎng)格模型高效率高保真簡化、多時相海量模型的數(shù)據(jù)分布式存儲管理與網(wǎng)絡(luò)傳輸、海量模型數(shù)據(jù)的高逼真可視化等方面;從產(chǎn)品屬性討論,針對數(shù)字表面模型的生產(chǎn)工藝進(jìn)行規(guī)范化,并逐步提升該類產(chǎn)品在國家基礎(chǔ)數(shù)據(jù)層面的重要性已十分必要,至少應(yīng)重新定義新的4D產(chǎn)品體系,以滿足行業(yè)技術(shù)進(jìn)步要求。

2)結(jié)構(gòu)化信息提取與三維DLG產(chǎn)品。與結(jié)構(gòu)化后的矢量模型數(shù)據(jù)比較,無論采用何種算法進(jìn)行模型簡化,以網(wǎng)格方式進(jìn)行表達(dá)的DSM產(chǎn)品數(shù)據(jù)量都非常龐大。因此,對模型數(shù)據(jù)進(jìn)行結(jié)構(gòu)化信息提取,是今后重要的研發(fā)工作,其研究內(nèi)容至少包括模式識別、計算機(jī)圖形學(xué)、數(shù)據(jù)庫管理等交叉學(xué)科知識。

另外,關(guān)于三維DLG,盡管目前業(yè)內(nèi)還沒有明確定義,但論文認(rèn)為應(yīng)遵從以下兩個原則:①三維DLG完全涵蓋二維DLG的表現(xiàn)內(nèi)容,通過簡單的視圖轉(zhuǎn)換與打印便能生產(chǎn)傳統(tǒng)二維DLG;②三維DLG應(yīng)涵蓋三維實體模型的骨架內(nèi)容,因此需要存儲更多的地物側(cè)面坐標(biāo)信息,能通過簡單的拓?fù)渲貥?gòu)(有限元剖分)與視圖轉(zhuǎn)換便能生成普通的3D模型,但較傳統(tǒng)3D模型占有更小的存儲空間與復(fù)雜度,更利于國家或地區(qū)進(jìn)行基礎(chǔ)測繪產(chǎn)品入庫存檔等。

概括來講,本文認(rèn)為目前數(shù)字表面模型應(yīng)被逐步提升到國家基礎(chǔ)測繪產(chǎn)品這一戰(zhàn)略高度上來,與數(shù)字高程模型、數(shù)字正射影像、數(shù)字線劃圖共同組成新的4D產(chǎn)品體系;建議重新拓展數(shù)字線劃圖的概念,使得傳統(tǒng)線劃圖與三維實體模型能有效統(tǒng)一,能直接滿足地表實體的數(shù)字化構(gòu)建、表達(dá)、傳輸?shù)葢?yīng)用需求。

3 結(jié)束語

本文針對機(jī)載激光雷達(dá)點云與影像聯(lián)合測圖幾類通用技術(shù)進(jìn)展展開討論,并對未來的技術(shù)發(fā)展趨勢和新的產(chǎn)品體系建設(shè)需求進(jìn)行簡要分析,具體總結(jié)如下:

1)從傳感器集成檢校與數(shù)據(jù)配準(zhǔn)技術(shù)、高質(zhì)量濾波與分類技術(shù),以及精細(xì)建模與矢量測圖技術(shù)等3個方面對機(jī)載激光雷達(dá)點云與影像聯(lián)合測圖通用技術(shù)現(xiàn)狀進(jìn)行描述,并簡要指出現(xiàn)有方法所存在的不足;

2)在激光點云數(shù)據(jù)處理方面,從點云數(shù)據(jù)質(zhì)量、自動點云目標(biāo)分類等方面討論了未來點云數(shù)據(jù)后處理的優(yōu)勢與趨勢;

3)在產(chǎn)品體系構(gòu)建方面,論文圍繞DSM為核心提出建設(shè)新4D產(chǎn)品體系的構(gòu)想,隨后初步給出三維DLG的概念,以期統(tǒng)一現(xiàn)有的數(shù)字線劃圖與三維單體模型數(shù)據(jù)類型,成為未來主流的結(jié)構(gòu)化數(shù)據(jù)表述形式。

轉(zhuǎn)載請注明出處。

激光掃描儀機(jī)載激光點云
免責(zé)聲明

① 凡本網(wǎng)未注明其他出處的作品,版權(quán)均屬于激光制造網(wǎng),未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用。獲本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使 用,并注明"來源:激光制造網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)責(zé)任。
② 凡本網(wǎng)注明其他來源的作品及圖片,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本媒贊同其觀點和對其真實性負(fù)責(zé),版權(quán)歸原作者所有,如有侵權(quán)請聯(lián)系我們刪除。
③ 任何單位或個人認(rèn)為本網(wǎng)內(nèi)容可能涉嫌侵犯其合法權(quán)益,請及時向本網(wǎng)提出書面權(quán)利通知,并提供身份證明、權(quán)屬證明、具體鏈接(URL)及詳細(xì)侵權(quán)情況證明。本網(wǎng)在收到上述法律文件后,將會依法盡快移除相關(guān)涉嫌侵權(quán)的內(nèi)容。

網(wǎng)友點評
0相關(guān)評論
精彩導(dǎo)讀