撰稿人 | 仇旻
論文題目 | Non-Abelian braiding on photonic chips
作者 | 張旭霖*,余峰,陳澤國(guó),田振男*,陳岐岱,孫洪波*,馬冠聰*
完成單位 | 吉林大學(xué),清華大學(xué),香港浸會(huì)大學(xué)
論文導(dǎo)讀
飛秒激光直寫(xiě)技術(shù)具有加工速度快、精度高(微納級(jí)別)、可實(shí)現(xiàn)三維結(jié)構(gòu)加工等優(yōu)勢(shì),在豐富的材料體系中獲得了應(yīng)用。利用飛秒激光直寫(xiě)技術(shù)制備的光子集成芯片,是面向下一代片上信息處理的重要平臺(tái)。近日,來(lái)自吉林大學(xué)電子學(xué)院、清華大學(xué)精儀系和香港浸會(huì)大學(xué)物理學(xué)院的聯(lián)合研究團(tuán)隊(duì)在飛秒激光直寫(xiě)三維光子集成芯片領(lǐng)域取得了重要進(jìn)展:研究人員設(shè)計(jì)和制備了基于非阿貝爾編織效應(yīng)的光子集成芯片,為片上光量子邏輯等應(yīng)用提供了新的技術(shù)路線。該研究成果以“Non-Abelian braiding on photonic chips”為題,以長(zhǎng)文形式在線發(fā)表在權(quán)威光學(xué)期刊《自然·光子學(xué)》(Nature Photonics)上。論文的通訊作者為清華大學(xué)的孫洪波教授、香港浸會(huì)大學(xué)的馬冠聰教授以及吉林大學(xué)的張旭霖副教授和田振男副教授;論文的共同第一作者為吉林大學(xué)的張旭霖副教授和博士生余峰;論文的貢獻(xiàn)作者還包括吉林大學(xué)的陳岐岱教授和香港浸會(huì)大學(xué)的陳澤國(guó)博士。
研究背景
采用光子作為信息載體的集成光子芯片,是后摩爾時(shí)期實(shí)現(xiàn)片上信息傳輸和處理的重要選項(xiàng)。現(xiàn)階段的集成光子芯片方案在多種材料體系平臺(tái)都有研究(如硅基、鈮酸鋰、聚合物等),而加工片上器件結(jié)構(gòu)的技術(shù)手段也多種多樣,包括光刻技術(shù)、離子注入技術(shù)、化學(xué)氣相沉積技術(shù)和飛秒激光直寫(xiě)技術(shù)等,這其中的絕大部分工藝都是只能面向二維芯片加工需求的平面工藝。飛秒激光直寫(xiě)技術(shù)是一種將脈沖激光光束聚焦于材料表面或內(nèi)部,通過(guò)激光焦點(diǎn)與材料的非線性相互作用,引起材料性質(zhì)改變的微納加工技術(shù)。得益于其獨(dú)特的加工方式,飛秒激光直寫(xiě)技術(shù)可以實(shí)現(xiàn)任意三維形狀結(jié)構(gòu)的加工制備,這給片上三維光子集成提供了可能。然而,當(dāng)前成熟的片上光子器件的設(shè)計(jì)原理大多是面向二維芯片(例如在受到廣泛關(guān)注的KLM方案中通過(guò)在二維芯片上設(shè)計(jì)由光波導(dǎo)組成的平面分束器和相移器兩種基本單元就能實(shí)現(xiàn)通用光量子計(jì)算),面向第三個(gè)空間維度的研究仍然十分缺乏。將片上光子集成推廣到三維,除了可以在物理空間上為提高器件的集成度提供直接解決方案,更可以提供新的物理自由度用于設(shè)計(jì)新型片上光子操控手段,而這些美好的愿景都離不開(kāi)飛秒激光直寫(xiě)這一強(qiáng)有力的工具。
技術(shù)突破
針對(duì)飛秒激光直寫(xiě)三維光子芯片的巨大應(yīng)用潛力,研究團(tuán)隊(duì)提出并在芯片上成功驗(yàn)證了一種新型三維光子集成與操控機(jī)制??非阿貝爾編織機(jī)制,用于實(shí)現(xiàn)片上光量子邏輯等應(yīng)用。非阿貝爾編織的概念最早在凝聚態(tài)領(lǐng)域被提出,用于實(shí)現(xiàn)受拓?fù)浔Wo(hù)的量子計(jì)算。非阿貝爾編織操作本質(zhì)上是實(shí)現(xiàn)一個(gè)幺正矩陣變換,而矩陣中的相位因子可以用經(jīng)典波體系的貝里幾何相位構(gòu)造,這給非阿貝爾編織在經(jīng)典波中的實(shí)現(xiàn)和應(yīng)用架起了橋梁。幾何相位在光子學(xué)中早已獲得了廣泛的研究和應(yīng)用(例如可以利用光學(xué)超表面來(lái)操控光子的偏轉(zhuǎn)等特性),但這些研究中利用的貝里幾何相位大多是一個(gè)相位因子,與之對(duì)應(yīng)的具有非阿貝爾特性的貝里相位矩陣在光子學(xué)中仍未被廣泛研究,其實(shí)現(xiàn)將為我們提供幺正矩陣等新的手段來(lái)操控光子,而這正是片上信息處理和運(yùn)算所需要的重要功能。
基于此,研究團(tuán)隊(duì)將非阿貝爾編織的概念引入到光子芯片中,首先給出在光子芯片上利用光波導(dǎo)結(jié)構(gòu)實(shí)現(xiàn)2個(gè)光子模式編織的方案,該編織結(jié)構(gòu)也會(huì)作為實(shí)現(xiàn)更多模式編織的基本單元。編織結(jié)構(gòu)由4根單模光波導(dǎo)組成(圖1a),其中波導(dǎo)A,B和S是不發(fā)生直接耦合的直波導(dǎo),X是與三者耦合的彎曲波導(dǎo)。按功能劃分,波導(dǎo)A和B是編織波導(dǎo),波導(dǎo)S是儲(chǔ)能波導(dǎo),波導(dǎo)X是耦合波導(dǎo),它與其它3個(gè)直波導(dǎo)的耦合系數(shù)如圖1b所示。系統(tǒng)一共存在4個(gè) 本征模式,受到手征對(duì)稱性的保護(hù),有2個(gè)模式從始至終保持簡(jiǎn)并狀態(tài),并保持和單波導(dǎo)結(jié)構(gòu)具有相同的傳播常數(shù),而編織正是依靠這2個(gè)本征“零?!钡慕^熱衍化實(shí)現(xiàn)的。整個(gè)編織過(guò)程,按照耦合系數(shù)的變化可以分為3個(gè)步驟:在步驟1中,依靠耦合系數(shù)的設(shè)計(jì)和2個(gè)簡(jiǎn)并零模的絕熱衍化,從波導(dǎo)A入射的光子會(huì)絕熱傳輸?shù)讲▽?dǎo)S并獲得一個(gè)π的幾何相位(用A→-S表示,下同),而從波導(dǎo)B入射的光子保持位置不變(圖1c);步驟2的過(guò)程可以用B→-A和S→S描述;步驟3的結(jié)果為S→-B和A→A。由于在編織過(guò)程中光子只會(huì)分布在3根直波導(dǎo)中(提供耦合作用的X波導(dǎo)中始終沒(méi)有光子),兩組衍化過(guò)程中積累的動(dòng)力學(xué)相位嚴(yán)格一致,因此整個(gè)編織過(guò)程可以用來(lái)描述(圖1d,[]T中的項(xiàng)依次對(duì)應(yīng)波導(dǎo)A和B中的波函數(shù)),其中由編織過(guò)程中幾何相位積累組成的貝里相位矩陣,該矩陣對(duì)應(yīng)量子邏輯Y門。
研究團(tuán)隊(duì)利用飛秒激光直寫(xiě)技術(shù)在玻璃芯片中制備了上述結(jié)構(gòu),通過(guò)測(cè)試輸出光在波導(dǎo)陣列中的分布,驗(yàn)證了2個(gè)光子模式的編織現(xiàn)象,即光子的輸出波導(dǎo)與輸入波導(dǎo)不同(圖1e,f);并通過(guò)設(shè)計(jì)一個(gè)干涉實(shí)驗(yàn),證實(shí)了該編織過(guò)程的貝里幾何相位矩陣(圖2)。
圖1 飛秒激光直寫(xiě)光子芯片中實(shí)現(xiàn)2個(gè)光子模式的編織操作。
圖2 編織過(guò)程中貝里幾何相位的實(shí)驗(yàn)表征。
為了驗(yàn)證光子模式編織的非阿貝爾特性,研究團(tuán)隊(duì)通過(guò)在上述結(jié)構(gòu)的基礎(chǔ)上加入一組新的編織結(jié)構(gòu)(包括編織波導(dǎo)C、耦合波導(dǎo)X2和儲(chǔ)能波導(dǎo)S2),設(shè)計(jì)并制備了3個(gè)光子模式編織的結(jié)構(gòu)(圖3a)。研究人員定義了兩個(gè)編織過(guò)程:G1編織過(guò)程實(shí)現(xiàn)波導(dǎo)A和B的編織而隔離波導(dǎo)C,G2編織過(guò)程實(shí)現(xiàn)波導(dǎo)B和C的編織而隔離波導(dǎo)A(圖3b)。根據(jù)這兩個(gè)編織過(guò)程的不同順序組合,可以實(shí)現(xiàn)多種多樣的編織操作??紤]G2G1(定義為先G1再G2,下同)和G1G2這兩個(gè)編織操作,在相同的波函數(shù)輸入下,這兩個(gè)過(guò)程的輸出分別為和。這說(shuō)明編織結(jié)果依賴于編織順序,即光子模式的編織操作具有非阿貝爾特性,這些特性在實(shí)驗(yàn)上被證實(shí)(圖3c-f)。而非阿貝爾編織的另一個(gè)重要特性GiGi+1Gi = Gi+1GiGi+1也在實(shí)驗(yàn)上被成功表征。
圖3 飛秒激光直寫(xiě)光子芯片中實(shí)現(xiàn)三個(gè)光子模式的非阿貝爾編織。
基于飛秒激光直寫(xiě)技術(shù)制備的非阿貝爾編織器件具有良好的可拓展性,只需按照一定步驟直寫(xiě)新的編織波導(dǎo)、耦合波導(dǎo)和儲(chǔ)能波導(dǎo),就可以實(shí)現(xiàn)任意多個(gè)光子模式的編織操作(圖4a),而通過(guò)設(shè)計(jì)具體的編織步驟可以構(gòu)造豐富的貝里相位矩陣,用于量子邏輯等應(yīng)用。作為展示,研究團(tuán)隊(duì)在實(shí)驗(yàn)上實(shí)現(xiàn)了5個(gè)光子模式的編織操作(圖4b-e)。
圖4 非阿貝爾編織的可拓展性及5個(gè)光子模式的編織實(shí)驗(yàn)。
觀點(diǎn)評(píng)述
該工作提出的非阿貝爾編織器件以及未來(lái)可以期待的基于非阿貝爾物理原理的新型片上光子器件都將需要三維集成,這體現(xiàn)了飛秒激光直寫(xiě)技術(shù)在制備該類型器件上不可替代的地位,而新的機(jī)遇也激勵(lì)著研究者們進(jìn)一步發(fā)展和改良該技術(shù)。由于非阿貝爾編織機(jī)制完全是基于幾何相位效應(yīng),因此現(xiàn)象和基于該機(jī)制的光子器件的性能將具有高魯棒性:改變器件的長(zhǎng)度完全不影響結(jié)果(作為對(duì)比,傳統(tǒng)的片上分束器和相移器等器件要精確控制器件的長(zhǎng)度),一定范圍內(nèi)的加工誤差等擾動(dòng)(例如波導(dǎo)間距影響耦合系數(shù))也不會(huì)影響器件的性能。這些優(yōu)勢(shì)表明,把非阿貝爾編織作為片上基本結(jié)構(gòu)單元,可以為高魯棒性片上光量子邏輯等應(yīng)用提供新的方案。未來(lái)通過(guò)拓展非阿貝爾編織機(jī)制到其它光學(xué)系統(tǒng)中,利用貝里相位矩陣作為新的自由度,將為研究者們提供更多的手段來(lái)操控光子。
本文出處
發(fā)表于:Nature Photonics (2022)
DOI: 10.1038/s41566-022-00976-2.
論文鏈接:
https://www.nature.com/articles/s41566-022-00976-2
轉(zhuǎn)載請(qǐng)注明出處。