閱讀 | 訂閱
閱讀 | 訂閱
軍工航天新聞

電弧增材制造:比激光增材更有發(fā)展前景?

星之球科技 來源:航空制造網(wǎng)2015-12-15 我要評論(0 )   

增材制造(Additive Manufacturing,AM)技術(shù)是基于離散-堆積原理,由零件三維數(shù)據(jù)驅(qū)動,采用材料逐層累加的方法制造實體零件的快速成形技術(shù)。


        增材制造(Additive Manufacturing,AM)技術(shù)是基于離散-堆積原理,由零件三維數(shù)據(jù)驅(qū)動,采用材料逐層累加的方法制造實體零件的快速成形技術(shù)。該成形方法最大優(yōu)勢是無需傳統(tǒng)的刀具即可成形、降低工序、縮短產(chǎn)品制造周期,尤其適于低成本小批量產(chǎn)品制造,而且越是結(jié)構(gòu)復(fù)雜、原材料附加值高的產(chǎn)品,其快速高效成形的優(yōu)勢越顯著,在航空航天、生物醫(yī)學(xué)、能源化工、微納制造等領(lǐng)域具有廣闊應(yīng)用前景。
面對新型飛行器低成本、高可靠性的要求,其零部件逐漸向大型化、整體化發(fā)展。增材制造技術(shù)無需模具,可直接低成本一體化制造復(fù)雜構(gòu)件,并有望基于增材制造技術(shù)在構(gòu)型能力上的優(yōu)勢,進一步優(yōu)化現(xiàn)飛行器零部件結(jié)構(gòu),提高結(jié)構(gòu)效率,實現(xiàn)結(jié)構(gòu)輕量化、高性能化。由于簡化或省略了傳統(tǒng)制造中的工藝準(zhǔn)備、模具設(shè)計等環(huán)節(jié),產(chǎn)品數(shù)字化設(shè)計、制造、分析高度一體化,能夠顯著縮短研發(fā)周期和研發(fā)成本。
金屬增材制造技術(shù)按熱源類型可分為3類:激光、電子束和電弧。過去20年主要研究以激光、電子束為熱源的粉基金屬增材制造技術(shù),通過不斷熔化或燒結(jié)金屬粉來連續(xù)逐層制備復(fù)雜結(jié)構(gòu)零部件,現(xiàn)已應(yīng)用于航空航天、國防軍工、能源動力等高精尖技術(shù)領(lǐng)域部分關(guān)鍵零部件,但由于其原材料、熱源特點,金屬粉基激光、電子束增材制造技術(shù)在成形某些特定結(jié)構(gòu)或特定成分構(gòu)件時受到一定限制而無法實現(xiàn)或即使可以成形,其原材料、時間成本很高,具有諸多不足之處:(1)對于激光熱源,其成形速率慢、鋁合金對激光的吸收率低等;(2)對于電子束熱源,真空爐體尺寸對構(gòu)件體積的限制;(3)粉基金屬原材料制備成本較高、易受污染、利用率低等均增加了原料成本。
基于上述原因,現(xiàn)有的技術(shù)成形大尺寸復(fù)雜結(jié)構(gòu)件時表現(xiàn)出一定的局限性,為了應(yīng)對大型化、整體化航天結(jié)構(gòu)件的增材制造需求,基于堆焊技術(shù)發(fā)展起來的低成本、高效率電弧增材制造技術(shù)受到部分學(xué)者關(guān)注。電弧增材制造技術(shù)(Wireand Arc Additive Manufacture,WAAM)以電弧為載能束,采用逐層堆焊的方式制造金屬實體構(gòu)件,該技術(shù)主要基于TIG、MIG、SAW等焊接技術(shù)發(fā)展而來,成形零件由全焊縫構(gòu)成,化學(xué)成分均勻、致密度高,開放的成形環(huán)境對成形件尺寸無限制,成形速率可達(dá)幾kg/h,但電弧增材制造的零件表面波動較大,成形件表面質(zhì)量較低,一般需要二次表面機加工,相比激光、電子束增材制造,電弧增材制造技術(shù)的主要應(yīng)用目標(biāo)是大尺寸復(fù)雜構(gòu)件的低成本、高效快速近凈成形。
本文主要介紹電弧增材制造技術(shù)現(xiàn)狀,分析現(xiàn)階段該技術(shù)研究的不足之處,探討其可能的發(fā)展方向,闡述該技術(shù)在大型化、整體化高端航空零部件制造中的應(yīng)用。
WAAM技術(shù)現(xiàn)狀
1WAAM裝備系統(tǒng):1.1基本硬件構(gòu)成及特征
電弧增材制造是數(shù)字化連續(xù)堆焊成形過程,其基本成形硬件系統(tǒng)應(yīng)包括成形熱源、送絲系統(tǒng)及運動執(zhí)行機構(gòu)。電弧增材制造三維實體零件依賴于逐點控制的熔池在線、面、體的重復(fù)再現(xiàn),若從載能束的特征考慮,其電弧越穩(wěn)定越有利于成形過程控制,即成形形貌的連續(xù)一致性。因此,電弧穩(wěn)定、無飛濺的非熔化極氣體保護焊(TIG)和基于熔化極惰性/活性氣體保護焊(MIG/MAG)開發(fā)出冷金屬過渡(Cold metal Transfer,CMT)技術(shù)成為目前主要使用的熱源提供方式。
作為由點向三維方向擴展的運動執(zhí)行機構(gòu),其位移與速度、位置的重復(fù)定位精度、運動穩(wěn)定性等對成形件尺寸精度的影響至關(guān)重要,目前使用較多的是數(shù)控機床和機器人。數(shù)控機床多作為形狀簡單、尺寸較大的大型構(gòu)件成形,機器人具有更多的運動自由度,與數(shù)控變位機配合,在成形復(fù)雜結(jié)構(gòu)及形狀上更具優(yōu)勢,但基于TIG的側(cè)向填絲電弧增材制造因絲與弧非同軸,如果不能保證送絲與運動方向的相位關(guān)系,高自由度的機器人可能并不適合,所以機器人多與MIG/MAG、CMT、TOP-TIG等絲弧同軸的焊接電源配合搭建電弧增材成形平臺。在國內(nèi)外電弧增材相關(guān)研究機構(gòu)的報道中,所采用的成形系統(tǒng)如表1所示。相比TIG、MIG/MAG、PAW等,CMT具有低熱輸入、無飛濺等特點。此外,其送絲運動與熔滴過渡過程可進行數(shù)字化協(xié)調(diào),在物質(zhì)輸入方面具有更高的可操控性,可能會成為將來電弧增材制造的主要熱源方式。
 


總體而言,電弧增材制造載能束具有熱流密度低、加熱半徑大、熱源強度高等特征,成形過程中往復(fù)移動的瞬時點熱源與成形環(huán)境強烈相互作用,其熱邊界條件具有非線性時變特征,故成形過程穩(wěn)定性控制是獲得連續(xù)一致成形形貌的難點,尤其對大尺寸構(gòu)件而言,熱積累引起的環(huán)境變量變化更顯著,達(dá)到定態(tài)熔池需要更長的過渡時間。針對熱積累導(dǎo)致的環(huán)境變化,如何實現(xiàn)過程穩(wěn)定性控制以保證成形尺寸精度是現(xiàn)階段電弧增材制造的研究熱點。基于視覺傳感系統(tǒng)的焊接質(zhì)量在線監(jiān)測與控制技術(shù)首先被移植應(yīng)用于該領(lǐng)域,并取得了一定成果。
1.2成形過程穩(wěn)定性硬件系統(tǒng)
電弧增材成形采用逐層累加的方式構(gòu)建三維實體零件,保證形狀、尺寸精度,需要單層成形尺寸與三維數(shù)字化模型建立的分層切片數(shù)據(jù)一致,但在實際成形過程中,熱積累作用導(dǎo)致熔池體系熱邊界環(huán)境非線性時變,故實現(xiàn)自動化電弧增材制造系統(tǒng)除了以上的基本成形硬件條件外,還需要能夠?qū)γ恳怀练e層的表面形貌、質(zhì)量及尺寸精度進行在線監(jiān)測和控制。
WAAM增材制造是以高溫液態(tài)金屬熔滴過渡的方法通過逐層累積的方式成形的,成形過程中隨著堆焊層數(shù)的增加,成形件熱積累嚴(yán)重、散熱條件變差,以至于熔池凝固時間增加,熔池形狀難于控制,尤其是在零件邊緣,由于液態(tài)熔池的存在,邊緣形貌與成形尺寸的控制更加困難,即熱積累作用導(dǎo)致熔池體系熱邊界環(huán)境非線性時變,故實現(xiàn)自動化電弧增材制造系統(tǒng)除了以上的基本成形硬件條件外,還需要能夠?qū)γ恳怀练e層的表面形貌、質(zhì)量及尺寸精度進行在線監(jiān)測和控制。在焊槍處安裝紅外溫度傳感器的被動反饋式層間溫度控制方式,強烈依賴于人為目標(biāo)參數(shù)的設(shè)置,而直接以熔覆層的形貌尺寸特征作為信號源,通過實時在線監(jiān)測尺寸信息,實現(xiàn)反饋調(diào)節(jié)可能更可取。如圖1所示,美國Tufts大學(xué)Kwak等建立了利用MIG焊槍進行堆焊成形,等離子槍在線熱處理,通過兩套結(jié)構(gòu)光傳感器對熔覆層形貌特征進行監(jiān)測,以及一套紅外攝像機用于成形件表面溫度在線監(jiān)測的雙輸入輸出閉環(huán)控制系統(tǒng),以焊速和送絲速度作為控制變量,熔覆堆高和層寬作為被控變量,實現(xiàn)對成形過程中成形尺寸的實時閉環(huán)控制。

  國內(nèi)張廣軍等設(shè)計了一套用于焊道特征尺寸控制的雙被動視覺傳感系統(tǒng),如圖2所示,可同時獲得熔敷層寬度和焊槍到熔敷層表面的高度圖像,實現(xiàn)了熔敷層有效寬度、堆高等參數(shù)的在線準(zhǔn)確檢測,并以熔敷層有效寬度為被控變量,焊速為控制變量,設(shè)計了單神經(jīng)元自學(xué)習(xí)PSD控制器,通過模擬仿真和干擾試驗驗證了控制器性能。參數(shù)自學(xué)習(xí)PSD控制器在熔敷層定高度、變高度控制中均可獲得良好的控制效果,同時通過對熔敷層表面到焊槍噴嘴的距離進行監(jiān)測和自適應(yīng)控制,滿足了WAAM成形穩(wěn)定性的要求。



WAAM載能束熱輸入高、熱源半徑大、金屬熔體短程流動等特征決定了成形尺寸對工藝參數(shù)具有較弱的響應(yīng)靈敏度,而且溫度越高越顯著,與焊接過程焊縫質(zhì)量的在線監(jiān)測目的不同,WAAM過程的監(jiān)測與反饋控制目的在于控形,而其寬泛的工藝規(guī)范帶使得這一反饋控制可能無法取得立竿見影的效果,故在提高成形精度上不能行之有效。WAAM的應(yīng)用是“近凈成形”、“原型制造”,其追求的是低成本、高效率而非高精度,所以對成形精度要求并不苛刻(需要2次機加工)。此外,該系統(tǒng)需在焊槍周圍輔助復(fù)雜的光路系統(tǒng),光路干涉嚴(yán)重約束了焊槍的可達(dá)性,而從該技術(shù)自身特征出發(fā),通過揭示成形機理,優(yōu)化工藝,可能更適于簡單、高效、低成本的電弧增材制造。
2成形過程穩(wěn)定性的工藝控制
不同于激光及電子束,電弧增材制造的熔池體積較大,而且成形過程中因冷態(tài)原材料、電弧力等擾動因素的存在,使得熔池成為一個不穩(wěn)定的體系,但WAAM能夠成為增材制造的先決條件是成形過程必須使得熔池體系具備穩(wěn)定的重復(fù)再現(xiàn)能力。在初期試驗規(guī)律性研究階段,主要基于電弧焊接技術(shù),針對不同材料體系匹配不同的焊接方法及成形系統(tǒng),甄選出關(guān)鍵影響因子,采用試驗方法研究單層單道焊縫形狀與最終成形零件表面質(zhì)量的關(guān)系,建立起成形質(zhì)量與焊接關(guān)鍵工藝參數(shù)的關(guān)系,如焊速(TS)、焊絲直徑(WD)、送絲速度(WFS)、導(dǎo)電嘴端面與工件距離(CTWD)、層間溫度、電流、電壓等。
在基于TIG的堆焊成形過程中,熔滴向熔池過渡的穩(wěn)定性對于成形質(zhì)量至關(guān)重要,電弧挺度弱于激光、電子束等高能束,已堆焊沉積層形貌質(zhì)量對下道次的堆焊表面影響較大,上一道次形貌特征在WAAM成形技術(shù)中表現(xiàn)出特定時、空非連續(xù)“遺傳”特性,尤其是首道次成形,因基板的表面質(zhì)量、清潔度、加工狀態(tài)等不盡相同,因此首道次成形時應(yīng)采用“強工藝規(guī)范”來弱化基板對成形質(zhì)量的影響。圖3對比分析了在大電流、相對較高的送絲速度下首道次TC4合金成形形貌特征,送絲速度WFS=10m/min時,首道次成形表面的“隆起”、“凹陷”缺陷較弱,成形寬度方向的波動性較低。基于“強工藝規(guī)范”的首道次成形時,因不必考慮熔池內(nèi)熔融金屬向兩側(cè)漫流,即重力對成形性的影響,向熔池內(nèi)持續(xù)地高速率物質(zhì)輸入以弱化表面張力作用,使得成形體系成為以熔融態(tài)金屬重力支配作用下的熔覆為主,可能會降低成形穩(wěn)定性對基板特征的敏感程度而獲得連續(xù)、穩(wěn)定一致的成形形貌。
 


 

  TIG電弧增材制造因其弧、絲的非同軸性,在成形路徑復(fù)雜多變時,送絲方向與堆焊方向的相位關(guān)系保持依賴于行走機構(gòu),往往增大了成形、控制系統(tǒng)的復(fù)雜性。基于MIG焊的WAAM雖然熱輸入較高,但成形速率更快,而且以焊絲作為電極,弧、絲具有同軸性,不存在如TIG電弧增材成形的送絲方向與焊接方向的相位關(guān)系,成形位置的可達(dá)性更高。Fronius公司基于MIG/MAG開發(fā)出冷金屬過渡(ColdmetalTransfer,CMT)技術(shù),因其具有超低熱輸入、熔滴過渡無飛濺、電弧穩(wěn)定等不同于MIG/MAG的特征,克服了MIG增材成形的諸多弊端而在WAAM成形領(lǐng)域展現(xiàn)出獨特的優(yōu)勢。2012年英國Cranfield大學(xué)研究人員系統(tǒng)地研究了工藝參數(shù),如焊速、送絲速度、焊絲直徑等對基于CMT方法的WAAM技術(shù)成形形貌(有效寬度、表面波動性等)的影響規(guī)律,以WFS/TS作為歸一化變量,通過該比值協(xié)調(diào)調(diào)整焊速及送絲速度,使得在研究工藝與成形形貌的相互關(guān)系時,工藝參數(shù)的變化水平具有可表征性,以WFS/TS=30時為例,不同TS水平下成形形貌如圖3所示。作者并未探討不同的WFS/TS水平下成形件有效寬度的變化規(guī)律,該參量或許可作為有效寬度定量表征的參考量,因該系數(shù)直接聯(lián)系于單位時間內(nèi)熔池物質(zhì)輸入效率,而成形的“隆起”、“凹陷”缺陷應(yīng)與焊速或送絲速度水平相關(guān),正如圖3中的成形形貌變化特征,其調(diào)整的參考量應(yīng)為焊接熱輸入,其成形形貌的變化特征與基于TIG的WAAM技術(shù)類似,增大焊速、降低送絲速度、減小焊絲直徑均可降低成形件的有效寬度。
近幾年,我國西北工業(yè)大學(xué)、哈爾濱工業(yè)大學(xué)、南昌大學(xué)、天津大學(xué)等部分高校科研機構(gòu)也相繼開展了WAAM成形技術(shù)的工藝與控制研究工作,但均處于試驗規(guī)律性描述和成形形貌、表面質(zhì)量控制方法研究階段。增材制造以個性化、復(fù)雜化需求為導(dǎo)向,WAAM獨特的載能束特征及其強烈的載能束與熱邊界相互作用,決定了針對不同的材料體系、結(jié)構(gòu)特征、尺寸、熱沉條件等,WAAM成形工藝也不一而同,可能無法如其他材料加工技術(shù)那樣制定加工圖或工藝規(guī)范帶,這意味著以試驗為基礎(chǔ)的經(jīng)驗方法難以面面俱到,更需要通過探討WAAM成形物理過程,深入認(rèn)識其成形基礎(chǔ)理論,在材料、結(jié)構(gòu)、形狀、路徑改變時,成形工藝參數(shù)設(shè)計有“據(jù)”可依,以適于自由多變靈活的WAAM成形過程。目前,國內(nèi)外公開發(fā)表的探討WAAM成形基礎(chǔ)理論問題的文章較少,僅涉及到成形過程溫度場的演變及應(yīng)力分布規(guī)律研究[27],從溫度場演變規(guī)律出發(fā),析出熔池?zé)徇吔缫恢滦缘目刂品椒?,可能對于工藝控形更具意義,并進一步從電弧參數(shù)和材料送進對成形過程的影響、熔池動力學(xué)、成形表面形貌演化動力學(xué)等相關(guān)科學(xué)問題出發(fā),揭示電弧增材成形的物理過程,應(yīng)成為該領(lǐng)域研究工作的核心。

3WAAM成形件性能
相比激光、電子束增材制造技術(shù)而言,電弧的熱輸入較高,WAAM成形過程中熔池和熱影響區(qū)的尺寸較大,較長時間內(nèi)已成形構(gòu)件將受到移動的電弧熱源往復(fù)后熱作用,而且隨著成形高度增大,基體熱沉作用減弱,熱耗散條件也發(fā)生變化,每一層的熱歷程不盡相同,因此,基于連續(xù)成形過程中溫度場演變規(guī)律,研究凝固織構(gòu)的晶體學(xué)特征及周期性,表征不同熱歷程條件下成形件的力學(xué)性能,成為控性的基礎(chǔ)。

  電弧增材成形的本質(zhì)是微鑄自由熔積成形,逐點控制熔池的凝固組織可減少或避免成分偏析、縮孔、凝固裂紋等缺陷的形成。在圖4TC4鈦合金成形件組織形貌中,可明顯觀察到貫穿于整個成形件的粗大柱狀初生β晶粒。初生β晶粒由底層熔池底部外延生長直至距離頂部1~2mm的位置,粗大柱狀晶的顏色差異源于不同晶粒的晶體取向差別,晶粒長大方向幾乎垂直于基體,這種組織的形成可能是源于首道次堆焊時,因采用TC4基體,熔合線附近的基板組織發(fā)生α相向β轉(zhuǎn)變,在熔合線附近形成完全的β相組織,然后β相作為形核點經(jīng)外延生長而快速長大,下道次成形時,在熔合線附近β晶粒繼續(xù)外延長大,而在熱影響區(qū)內(nèi),發(fā)生粗化,周而復(fù)始最終形成圖4左側(cè)所示的宏觀粗大柱狀β晶粒。
Wang等沿不同方向在TC4單壁成形件不同位置取樣,并與鍛件對比,評價沿成形方向及垂直于成形方向上成形件力學(xué)性能。在優(yōu)化工藝參數(shù)下,雖然沿成形方向和垂直于成形方向抗拉強度存在一定差異,但強度差異并不顯著。垂直于成形方向的塑性(沿柱狀初生β晶粒方向)顯著優(yōu)于沿成形方向,比鍛件高30%左右。在本課題組有關(guān)5A06鋁合金電弧增材成形的性能研究中,獲得了類似結(jié)論,成形件抗拉強度與鍛件基本持平,但塑性顯著提高。鋁合金組織中并未出現(xiàn)圖4中貫穿整個構(gòu)件的宏觀柱狀組織,織構(gòu)擇優(yōu)取向特征可能并非導(dǎo)致塑性提高的誘因,或許與成形過程中各層熔接特征相關(guān),這一猜想有待進一步驗證。增材制造最大的優(yōu)勢在于其復(fù)雜形狀的構(gòu)型能力,現(xiàn)階段的研究工作主要聚焦于控形,而性能的研究僅限于表征其性能水平。成形過程受往復(fù)移動瞬時點熱源的前熱、后熱作用,凝固織構(gòu)的取向、分布、晶粒度等必然與成形的熱物理過程相關(guān),因此以溫度場演變特征為契機,實現(xiàn)形性一體化控制是增材制造有別于傳統(tǒng)減材、等材加工方法的技術(shù)優(yōu)勢。
WAAM在航空制造中應(yīng)用前景
隨輕量化、高機動性先進航空飛行器的發(fā)展,飛機結(jié)構(gòu)件也向著輕量化、大型化、整體化改進,低成本高效地制造高可靠性、功能結(jié)構(gòu)一體化的大型航空結(jié)構(gòu)件成為航空制造技術(shù)發(fā)展的新挑戰(zhàn)。電弧增材制造以連續(xù)“線”作為基本構(gòu)型單元,適于機體內(nèi)部框架、加強肋及壁板結(jié)構(gòu)的快速成形。目前,大型整體鈦、鋁合金結(jié)構(gòu)在飛行器上的應(yīng)用越來越多,雖然大型一體化結(jié)構(gòu)件可顯著減輕結(jié)構(gòu)重量,但這種結(jié)構(gòu)給傳統(tǒng)減材、等材加工制造帶來巨大困難。如美國F35的主承力構(gòu)件仍需幾萬噸級水壓機壓制成形,后期需要大量繁瑣的銑削、打磨等工序,制造周期長。大型框架、整體筋板加強筋和加強肋的增材制造等強烈依賴于機加工設(shè)備的結(jié)構(gòu)件采用增材制造,可逾越國外對我國大噸位、高自由度機加工設(shè)備的技術(shù)封鎖,推進我國先進航空飛行器研發(fā)進度。
此外,受限于傳統(tǒng)加工技術(shù),現(xiàn)代飛機零部件可能在結(jié)構(gòu)、重量、形狀等諸多方面有所妥協(xié),以便于加工制造?;谠霾闹圃旒夹g(shù)在構(gòu)型能力上的優(yōu)勢,面向電弧增材制造的結(jié)構(gòu)優(yōu)化設(shè)計,具有更大的設(shè)計自由度,可顯著降低結(jié)構(gòu)重量。EADS公司為空客激光增材制造了結(jié)構(gòu)優(yōu)化的機翼支架,比使用鑄造的支架減重約40%,踐行了面向增材制造的結(jié)構(gòu)設(shè)計新思路,尤其面對大型結(jié)構(gòu)件,結(jié)構(gòu)優(yōu)化設(shè)計可能會在減重方面具有更顯著的效果。
2015年11月,紐約州已與Norsk Titanium達(dá)成“公、私合作協(xié)議”,紐約州將投資1.25億美元建工業(yè)規(guī)模的3D打印工廠,廠址設(shè)在紐約州Plattsburgh市。其主要成形技術(shù)為電弧填絲增材制造,預(yù)計2016年竣工,該增材制造工廠首要目標(biāo)是改變目前航空結(jié)構(gòu)件大余量的鈦金屬去除狀況,實現(xiàn)高效、低成本、高材料利用率地制造航空零部件。Norsk Titanium公司制造的某電弧增材成形零件成本可降低50%~70%,可縮短75%的產(chǎn)品上市時間。
發(fā)展機遇與挑戰(zhàn)
不論是替代傳統(tǒng)加工制造的部分環(huán)節(jié),還是基于靈活的構(gòu)型能力進行結(jié)構(gòu)設(shè)計以優(yōu)化結(jié)構(gòu),電弧增材制造技術(shù)付諸實踐還需經(jīng)過一定時期的發(fā)展完善過程。2012年3月,美國白宮宣布振興美國制造的新舉措,投資10億美金幫助美國制造進行體系改革,增材制造作為實現(xiàn)該項計劃的三大背景技術(shù)之一,旨在通過改善增材制造材料、裝備及標(biāo)準(zhǔn),實現(xiàn)創(chuàng)新設(shè)計的小批量、低成本數(shù)字化制造。英、德、法等國家也相繼推出相關(guān)措施,推動本國增材制造技術(shù)的發(fā)展。英國在電弧增材制造研究領(lǐng)域處于國際前沿,以Cranfield大學(xué)為代表的一批研究機構(gòu)在政府立項、企業(yè)出資參與下,針對電弧增材自動化控制、成形件力學(xué)性能研究、殘余應(yīng)力及變形控制、復(fù)雜形狀構(gòu)件成形路徑規(guī)劃和工業(yè)化應(yīng)用準(zhǔn)則等方面開展了系統(tǒng)研究,并逐步建立起政府、企業(yè)、科研機構(gòu)的多層次研團隊梯隊,與Airbus、Rolls-Royce、BAESystem、BombardierAerospace、Astrium、EADS等一大批航空航天企業(yè)建立并開展廣泛研究合作,研究目標(biāo)對接工業(yè)化應(yīng)用。增材制造的優(yōu)勢就在于工序簡單,能夠?qū)崿F(xiàn)直接面對客戶的制造,可省略其中環(huán)節(jié)而極大縮短研發(fā)周期。對增材制造而言,建立多層次多結(jié)構(gòu)的研發(fā)體系,客戶直接參與到制造中才能盡其所能地發(fā)揮其優(yōu)勢。
我國正處于推進“中國制造”向“中國創(chuàng)造”的戰(zhàn)略轉(zhuǎn)變時期,增材制造技術(shù)對增強我國產(chǎn)品自主創(chuàng)新能力,實現(xiàn)從“中國制造”向“中國創(chuàng)造”邁進有重要意義。增材制造技術(shù)及產(chǎn)品已經(jīng)在航空航天、汽車、生物醫(yī)療、文化創(chuàng)意等領(lǐng)域得到了初步應(yīng)用,涌現(xiàn)出一批具備一定競爭力的骨干企業(yè)。但我國電弧增材制造產(chǎn)業(yè)化仍處于起步階段,與先進國家相比還存在較大差距,尚未形成完整的產(chǎn)業(yè)體系,離實現(xiàn)大規(guī)模產(chǎn)業(yè)化、工程化應(yīng)用還有一定距離。關(guān)鍵核心技術(shù)有待突破,裝備及核心器件、成形材料、工藝及軟件等產(chǎn)業(yè)基礎(chǔ)薄弱,政策與標(biāo)準(zhǔn)體系有待建立,缺乏有效的協(xié)調(diào)推進機制。尤其對我國電弧增材制造技術(shù)而言,其系統(tǒng)的研究工作起步相對較晚,較英國有一定的差距,應(yīng)該在加快提升電弧增材制造技術(shù)水平的同時,加速發(fā)展其必備的核心器件,并就建立和完善產(chǎn)業(yè)標(biāo)準(zhǔn)體系等方面加快推進計劃,以政府及國家規(guī)劃為導(dǎo)向,鼓勵更多的直接面向客戶的企業(yè)參與其中,力爭在短期內(nèi)初步建立較為完善的產(chǎn)業(yè)體系,整體技術(shù)水平保持與國際同步,在航空航天等制造領(lǐng)域達(dá)到國際先進水平。

轉(zhuǎn)載請注明出處。

激光增材制造激光技術(shù)
免責(zé)聲明

① 凡本網(wǎng)未注明其他出處的作品,版權(quán)均屬于激光制造網(wǎng),未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用。獲本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使 用,并注明"來源:激光制造網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)責(zé)任。
② 凡本網(wǎng)注明其他來源的作品及圖片,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本媒贊同其觀點和對其真實性負(fù)責(zé),版權(quán)歸原作者所有,如有侵權(quán)請聯(lián)系我們刪除。
③ 任何單位或個人認(rèn)為本網(wǎng)內(nèi)容可能涉嫌侵犯其合法權(quán)益,請及時向本網(wǎng)提出書面權(quán)利通知,并提供身份證明、權(quán)屬證明、具體鏈接(URL)及詳細(xì)侵權(quán)情況證明。本網(wǎng)在收到上述法律文件后,將會依法盡快移除相關(guān)涉嫌侵權(quán)的內(nèi)容。

網(wǎng)友點評
0相關(guān)評論
精彩導(dǎo)讀