當(dāng)使用氮氣作為輔助氣體時,樣本表面上留下了聚合物基底熱分解后的薄層。而使用二氧化碳作為輔助氣體時,處理后FRP的表面質(zhì)量要提高許多。出現(xiàn)這樣的結(jié)果是由于二氧化碳的冷卻質(zhì)量要好一些。
當(dāng)使用光纖激光器對FRP材料進行切割時,帶來的熱損害很少。這是因為激光器的光斑尺寸很小。圖1和2顯示的是光纖激光器切割表面和帶來熱損害的SEM圖像。從圖像上可以清楚地看到熱損害被限制在復(fù)合材料的單獨一層上。
這些結(jié)果對于航空和航天工業(yè)來說是非常有利的。因為材料的大部分并沒有受激光加工影響,因此復(fù)合材料依然非常牢固和穩(wěn)定。
圖3顯示的是機械切斷產(chǎn)生的邊緣質(zhì)量同光纖激光切割相比較的情況。在機械切斷的樣本上,可以看到復(fù)合材料大部分突出纖維,而在激光切割的樣本上可以看到光滑的邊緣。
與在切割試驗中取得的結(jié)果類似,激光銑削試驗結(jié)果顯示,光纖激光器的小光斑尺寸對銑削應(yīng)用非常有利。激光處理后的纖維并沒有熱損害的痕跡,SEM高倍放大后可看到基底材料只有輕微的熔化痕跡(圖4和圖5)。試驗結(jié)果證實了使用光纖激光器對航空和航天復(fù)合材料進行銑削的可能性。
同樣還是使用光纖激光器JK200FL在FRP復(fù)合材料上環(huán)鉆2毫米直徑的孔。切割試驗表明,對于厚度超過1毫米的復(fù)合材料來說,試圖像處理金屬一樣來處理復(fù)合材料,其切割結(jié)果并不讓人滿意。
因此需要稍大的切口使得材料能夠脫離,不讓基底粘附在新的切割面上。這種設(shè)計的策略稱為激光螺旋狀鉆孔。
與使用Nd:YAG激光器鉆出的孔相比,激光螺旋狀鉆孔的熱損害要少一些,表面的邊緣質(zhì)量看上去好一些。頂部表面的回?zé)恐挥袔资⒚住?/p>
光纖激光器鉆孔試驗的結(jié)果顯示,配有掃描頭的激光加工中,其加工速度與孔的開放式幾何結(jié)構(gòu)相配合,能夠減少FRP復(fù)合材料表面基底材料的損害。圖6顯示的是經(jīng)過激光螺旋狀鉆孔后的GFRP復(fù)合材料的圖像。
總結(jié)
使用光纖傳輸?shù)母叻逯倒β实腘d:YAG激光器和200瓦單模光纖激光器的試驗結(jié)果表明,激光器能夠提供傳統(tǒng)技術(shù)手段無法提供的加工質(zhì)量。
熱管理是加工FRP復(fù)合材料的關(guān)鍵。通過使用如二氧化碳這樣的輔助氣體,能夠極大減少激光光束引起的損害。
使用光纖激光器的試驗表明,小光斑尺寸以及隨之帶來的精細定向熱輸入對于加工FRP復(fù)合材料非常有利。擁有高光束質(zhì)量、小光斑尺寸以及可選掃描系統(tǒng)的光纖激光器被證明非常適用于加工這些材料。試驗結(jié)果還表明,激光螺旋狀鉆孔在今后的航空航天及汽車領(lǐng)域激光加工應(yīng)用中將扮演重要的角色。
轉(zhuǎn)載請注明出處。