閱讀 | 訂閱
閱讀 | 訂閱
3D市場研究

當核聚變反應堆遇上3D打印 “人造太陽”有望更快“發(fā)光”

來源:科技日報2020-07-21 我要評論(0 )   

隨著核技術日漸成熟,被譽為“人造太陽”和“人類終極能源”的可控核聚變反應堆,或有可能為人類源源不斷地提供清潔能源、造福后代子孫。這項技術的主要原理是氘和氚在...


隨著核技術日漸成熟,被譽為“人造太陽”和“人類終極能源”的可控核聚變反應堆,或有可能為人類源源不斷地提供清潔能源、造福后代子孫。這項技術的主要原理是氘和氚在高溫高壓條件下產生核聚變反應,并生成大量熱能用于發(fā)電。

近日,深圳大學增材制造研究所陳張偉和勞長石教授團隊,與中核集團核工業(yè)西南物理研究院(以下簡稱西南物理研究院)合作,首次提出并實現了基于3D打印一體化自由設計和成形復雜多孔結構正硅酸鋰陶瓷件,有望替代傳統(tǒng)的微球床結構,成為新一代產氚器件,展現出重要應用前景。該成果已發(fā)表在《增材制造》雜志上。


產氚單元就像核聚變反應堆的心臟


自從核反應被發(fā)現以來,人們就在不停地探索核能的有效利用。


目前,越來越多的科學家和能源專家開始將目光投向核聚變。核聚變的原料主要是氫的同位素——氘和氚。氘可以在海水中得到,每升水約含30毫克氘。


一座1000兆瓦的核聚變電站,每年耗氘量只需304公斤,按此計算,全球海水中的氘足夠人類使用上百億年。


但是,氚幾乎不存在于自然界,需要靠氦與鋰陶瓷不斷催化反應生成。作為磁約束聚變堆的一個重要組件,固態(tài)產氚包層是聚變能商業(yè)化應用前需要解決的核心問題之一。


目前,各國科學家首選的氚增殖劑材料是正硅酸鋰(Li4SiO4),通行的方法是將正硅酸鋰陶瓷與氦氣發(fā)生反應產生氚??茖W家將實現這一功能的陶瓷部件稱為產氚單元。


傳統(tǒng)的鋰陶瓷產氚單元一般是把正硅酸鋰做成直徑1毫米左右的微球,并將它們堆積起來,做成球床結構,微球之間的空隙可以注入氦氣。


但是,這種產氚單元的填充率有限,而且無法自由調控。此外,微球堆積產生的應力集中,容易造成產氚單元結構形變開裂等破壞,成為球床結構和性能均勻穩(wěn)定性的掣肘。


一旦產氚單元發(fā)生故障,將直接導致聚變反應堆無法平穩(wěn)運行。因此,科學家一直在嘗試優(yōu)化產氚單元的結構。


另辟蹊徑可使產氚效率大幅提升


針對上述問題,2018年,陳張偉和勞長石等人與西南物理研究院另辟蹊徑,提出用3D打印正硅酸鋰陶瓷單元方法,研制一種全新結構的產氚單元。


但是,3D打印面臨的第一個難題就是正硅酸鋰對環(huán)境特別敏感,極易與水、二氧化碳發(fā)生反應,造成物相破壞,成為偏硅酸鋰。


“為此,我們從正硅酸鋰粉體的存儲、可打印的粉體漿料的配制、打印工藝的實現到熱處理等過程中,均針對環(huán)境變量進行了嚴苛的約束與把控。例如配制粉體漿料過程就需要在充滿惰性氣體的手套箱中進行,并且各類添加劑均為不含水且不能與正硅酸鋰產生反應的有機溶劑材料。在這樣的環(huán)境中進行漿料的配制和3D打印,能夠確保正硅酸鋰的物相穩(wěn)定?!标悘垈ソ淌诟嬖V科技日報記者。


為了讓正硅酸鋰粉體漿料經過3D打印出來后,能夠迅速固化,就必須選擇合適的固化成形方式。


“陶瓷3D打印有兩種主要固化成形方式,一種光固化,另一種是粉末燒結或熔化。”陳張偉說,粉末燒結是用高能量激光直接對陶瓷粉末進行高溫燒結,燒成所需的形狀,但是因為溫度比較高,容易產生開裂,而且精度可控性較差。


而光固化不僅開裂缺陷較少,打印精度較高,同時對多孔結構細節(jié)具有很強的把控能力。


因此,科研團隊選擇了光固化的方式,并研發(fā)出一種光固化3D打印專用高相純度正硅酸鋰粉體漿料。


陳張偉介紹說:“我們在正硅酸鋰粉體漿料中混合了經優(yōu)選過的有機化學添加劑組分,以及小劑量的光敏添加劑,它對特定波長的光敏感,利用405納米紫外光對漿料進行照射,可以實現漿料的光聚合固化?!?/p>


3D打印出來的結構件,再進行高溫燒結,在1050攝氏度的環(huán)境中燒制8—10小時實現瓷化,就能去除固化結構中的各種添加劑,且不再跟環(huán)境中的水和二氧化碳發(fā)生反應,“這些化學添加劑是以物理方式添加進去的,不會對正硅酸鋰造成破壞?!标悘垈ソ忉尩馈?/p>


采用這種方法打印出來的產氚單元是一體化無缺陷結構,經過測試,克服了球床填充率有限和應力集中引發(fā)的可靠性問題,其穩(wěn)定性、力學性能比傳統(tǒng)微球結構提升2倍。


3D打印出來的這種產氚單元的產氚效率也有望獲得大大提升。傳統(tǒng)的微球結構占空比最高為65%,而3D打印可以根據需要在60%到90%之間靈活調整,正硅酸鋰的比表面積也較微球結構得到大幅增加。


國際同行給予高度評價,認為提出的3D打印技術在核聚變核心陶瓷部件的制造與應用極具創(chuàng)新性。該研究在核聚變堆應用方面極具前景,將為替代傳統(tǒng)球床陶瓷產氚結構和推動托卡馬克核聚變反應技術商業(yè)化提供更多可能。


已完成核聚變反應堆關鍵部件試制


雖然人類距離可控核聚變還有很長的路要走,不過這并不妨礙我們向著目標不斷努力。


3D打印作為一種新興的先進制造方式,顛覆了傳統(tǒng)制造模式。3D打印技術可實現復雜結構一體化成形,具有制造周期短、材料利用率高等特點,是復雜構件制造的重要創(chuàng)新方法。在核聚變反應堆中,也逐漸展現出獨特的優(yōu)勢。

據陳張偉教授介紹,此前,深圳大學增材制造研究所已與西南物理研究院合作,圍繞核聚變堆第一壁CLF-1鋼構件的選擇性激光熔化工藝(SLM,金屬材料增材制造中的一種主要技術途徑)及其組織性能調控開展了系統(tǒng)研究工作,首次將非均質雙/多模組織設計思路引入到SLM成形高強韌低活化馬氏體鋼(RAFM,為未來核聚變堆研發(fā)的鋼種)的開發(fā),基于SLM工藝參數和掃描策略的優(yōu)化,SLM成形CLF-1鋼兼具高強度與高塑性,其綜合強韌性顯著優(yōu)于目前文獻報道的RAFM鋼。


這項研究為3D打印高強韌RAFM鋼的結構設計提供重要理論依據和技術指導,促進核聚變堆關鍵部件組織性能可控的一體化成型。


另據媒體報道,2018年,中科院合肥物質科學研究院已經利用3D打印技術實現核聚變堆關鍵部件——包層第一壁樣件的試制。


研究人員以中國低活化馬氏體鋼(CLAM)為原材料,打印出來的部件樣品尺寸精度符合設計要求,材料的致密度達到99.7%,與傳統(tǒng)方法制備的CLAM鋼強度相當。同時,研究還發(fā)現3D打印的逐層熔化和定向凝固特性導致了不同方向上CLAM鋼組織和性能的差異,這種差異未來可以通過掃描方案優(yōu)化和熔池形核優(yōu)化等方式有效降低甚至消除。該研究表明,3D打印技術在核聚變堆等先進核能系統(tǒng)復雜構件制造上具有良好的應用前景。


基礎科學的日新月異和3D打印技術的不斷變革與創(chuàng)新,使人類在工程技術領域的探索充滿想象空間,未來核聚變堆的各個零部件全是由3D打印制造出來的并不是沒有可能。


轉載請注明出處。

暫無關鍵詞
免責聲明

① 凡本網未注明其他出處的作品,版權均屬于激光制造網,未經本網授權不得轉載、摘編或利用其它方式使用。獲本網授權使用作品的,應在授權范圍內使 用,并注明"來源:激光制造網”。違反上述聲明者,本網將追究其相關責任。
② 凡本網注明其他來源的作品及圖片,均轉載自其它媒體,轉載目的在于傳遞更多信息,并不代表本媒贊同其觀點和對其真實性負責,版權歸原作者所有,如有侵權請聯(lián)系我們刪除。
③ 任何單位或個人認為本網內容可能涉嫌侵犯其合法權益,請及時向本網提出書面權利通知,并提供身份證明、權屬證明、具體鏈接(URL)及詳細侵權情況證明。本網在收到上述法律文件后,將會依法盡快移除相關涉嫌侵權的內容。

網友點評
0相關評論
精彩導讀