閱讀 | 訂閱
閱讀 | 訂閱
電子加工新聞

激光在LED剝離與劃片中的應(yīng)用

星之球科技 來(lái)源:OFweek激光網(wǎng)2011-10-11 我要評(píng)論(0 )   

在當(dāng)今社會(huì)中,制造商總是在尋找那些更低能耗和更高效率的設(shè)備。來(lái)自IMS研究所的Barry Young對(duì)此做了統(tǒng)計(jì),預(yù)計(jì)2010年全球發(fā)光二極管(LED)的需求將增長(zhǎng)61%,手機(jī)市場(chǎng)...

在當(dāng)今社會(huì)中,制造商總是在尋找那些更低能耗和更高效率的設(shè)備。來(lái)自IMS研究所的Barry Young對(duì)此做了統(tǒng)計(jì),預(yù)計(jì)2010年全球發(fā)光二極管(LED)的需求將增長(zhǎng)61%,手機(jī)市場(chǎng)是很大的觸發(fā)因素。大面積的背光LED電視市場(chǎng)正在迅速擴(kuò)大,LED也被廣泛應(yīng)用于投影儀、手電筒、汽車(chē)尾燈和頭燈、普通照明等市場(chǎng)。固態(tài)白光源可以通過(guò)混合紅光、綠光、藍(lán)光LED來(lái)實(shí)現(xiàn),或者通過(guò)使用磷光材料將單色藍(lán)光或紫外LED轉(zhuǎn)換成寬光譜的白光。

  隨著LED產(chǎn)量的增加,LED制造商正在尋找可以?xún)?yōu)化劃片寬度、劃片速度與加工產(chǎn)量的新工藝進(jìn)展。新型LED激光剝離(LLO)和激光晶圓劃片設(shè)備給LED制造商提供了高性?xún)r(jià)比的工業(yè)工具,可以滿足日益增長(zhǎng)的市場(chǎng)需求。

高亮度垂直結(jié)構(gòu)LED

  通常情況下,藍(lán)光/綠光LED是由幾微米厚的氮化鎵(GaN)薄膜在藍(lán)寶石襯底上外延生長(zhǎng)形成的。 一些LED的制造成本主要取決于藍(lán)寶石襯底本身的成本和劃片—裂片加工成本。對(duì)于傳統(tǒng)的LED倒裝橫向結(jié)構(gòu),藍(lán)寶石是不會(huì)被剝離的,因此,陰極和陽(yáng)極都在同一側(cè)的氮化鎵外延層(epi)(圖1)。

 

圖1. 傳統(tǒng)的橫向結(jié)構(gòu)的藍(lán)光LED。 MQW =多量子阱。

  這種橫向結(jié)構(gòu)對(duì)于高亮度LED有幾個(gè)缺點(diǎn):材料內(nèi)電流密度大、電流擁擠、可靠性較差、壽命較短;此外,通過(guò)藍(lán)寶石的光損很大。

  設(shè)計(jì)人員通過(guò)激光剝離(LLO)工藝可以實(shí)現(xiàn)垂直結(jié)構(gòu)的LED,它克服了傳統(tǒng)的橫向結(jié)構(gòu)的各種缺陷。垂直結(jié)構(gòu)LED可以提供更大的電流,消除電流擁擠問(wèn)題以及器件內(nèi)的瓶頸問(wèn)題,顯著提高LED的最大輸出光功率與最大效率(圖2)。

 

圖2.垂直結(jié)構(gòu)的藍(lán)光LED

垂直LED結(jié)構(gòu)要求在加電極之前剝離掉藍(lán)寶石。準(zhǔn)分子激光器已被證明是分離藍(lán)寶石與氮化鎵薄膜的有效工具。LED激光剝離技術(shù)大大減少了LED加工時(shí)間,降低了生產(chǎn)成本,使制造商在藍(lán)寶石晶圓上生長(zhǎng)氮化鎵LED薄膜器件,并使薄膜器件與熱沉進(jìn)行電互連。這個(gè)工藝使得氮化鎵薄膜可以獨(dú)立于支撐物,并且氮化鎵LED可以集成到任何基板上。

激光剝離原理

  紫外激光剝離的基本原理是利用外延層材料與藍(lán)寶石材料對(duì)于紫外激光具有不同的吸收效率。藍(lán)寶石具有較高的帶隙能量(9.9 eV),所以藍(lán)寶石對(duì)于248nm的氟化氪(KrF)準(zhǔn)分子激光(5 eV輻射能量)是透明的,而氮化鎵(約3.3 eV的帶隙能量)則會(huì)強(qiáng)烈吸收248nm激光的能量。正如圖3所示,激光穿過(guò)藍(lán)寶石到達(dá)氮化鎵緩沖層,在氮化鎵與藍(lán)寶石的接觸面進(jìn)行激光剝離。這將產(chǎn)生一個(gè)局部的爆炸沖擊波,使得在該處的氮化鎵與藍(lán)寶石分離?;谕瑯拥脑?,193nm的氟化氬(ArF)準(zhǔn)分子激光可以用于分離氮化鋁(AlN)與藍(lán)寶石。具有6.3 eV帶隙能量的氮化鋁可以吸收6.4 eV的ArF激光輻射,而9.9 eV帶隙能量的藍(lán)寶石對(duì)于ArF準(zhǔn)分子激光則是透明的。

圖3. 248nm激光剝離示意圖

  光束均勻性和晶圓制備對(duì)于實(shí)現(xiàn)成功剝離都很重要。JPSA公司采用創(chuàng)新的光束均勻化專(zhuān)利技術(shù)使得準(zhǔn)分子激光束在晶圓上可以產(chǎn)生最大面積達(dá)5 × 5毫米的均勻能量密度分布的平頂光束。

  正確的晶圓制備是LLO成功的關(guān)鍵。需要最大限度地減少在藍(lán)寶石上高溫外延層生長(zhǎng)過(guò)程中產(chǎn)生的殘余應(yīng)力,還要保證外延層和襯底進(jìn)行充分鍵合,以避免在剝離過(guò)程中外延片破裂。圖4展示了一個(gè)典型的剝離效果。


垂直LED結(jié)構(gòu)要求在加電極之前剝離掉藍(lán)寶石。準(zhǔn)分子激光器已被證明是分離藍(lán)寶石與氮化鎵薄膜的有效工具。LED激光剝離技術(shù)大大減少了LED加工時(shí)間,降低了生產(chǎn)成本,使制造商在藍(lán)寶石晶圓上生長(zhǎng)氮化鎵LED薄膜器件,并使薄膜器件與熱沉進(jìn)行電互連。這個(gè)工藝使得氮化鎵薄膜可以獨(dú)立于支撐物,并且氮化鎵LED可以集成到任何基板上。

激光剝離原理

  紫外激光剝離的基本原理是利用外延層材料與藍(lán)寶石材料對(duì)于紫外激光具有不同的吸收效率。藍(lán)寶石具有較高的帶隙能量(9.9 eV),所以藍(lán)寶石對(duì)于248nm的氟化氪(KrF)準(zhǔn)分子激光(5 eV輻射能量)是透明的,而氮化鎵(約3.3 eV的帶隙能量)則會(huì)強(qiáng)烈吸收248nm激光的能量。正如圖3所示,激光穿過(guò)藍(lán)寶石到達(dá)氮化鎵緩沖層,在氮化鎵與藍(lán)寶石的接觸面進(jìn)行激光剝離。這將產(chǎn)生一個(gè)局部的爆炸沖擊波,使得在該處的氮化鎵與藍(lán)寶石分離?;谕瑯拥脑恚?93nm的氟化氬(ArF)準(zhǔn)分子激光可以用于分離氮化鋁(AlN)與藍(lán)寶石。具有6.3 eV帶隙能量的氮化鋁可以吸收6.4 eV的ArF激光輻射,而9.9 eV帶隙能量的藍(lán)寶石對(duì)于ArF準(zhǔn)分子激光則是透明的。

a圖4. 248nm激光脈沖對(duì)藍(lán)寶石上的氮化鎵進(jìn)行激光剝離(一個(gè)脈沖激光光斑一次覆蓋9個(gè)芯片)。

  LLO系統(tǒng)可以在室溫環(huán)境下進(jìn)行高速、高產(chǎn)量的加工。精心設(shè)計(jì)的系統(tǒng)允許單發(fā)脈沖光斑同時(shí)覆蓋多個(gè)芯片,并采用“飛行射擊”革新技術(shù)使得每一發(fā)脈沖光斑都能與晶圓芯片定位精確對(duì)準(zhǔn)。

藍(lán)光LED晶圓激光劃片

  傳統(tǒng)的制造商仍在繼續(xù)供應(yīng)橫向結(jié)構(gòu)的藍(lán)光LED,激光劃片是加工這種結(jié)構(gòu)的晶圓的理想選擇。藍(lán)寶石的極高硬度給鋸片切割與金剛石劃片帶來(lái)芯片成品率低、產(chǎn)量低和成本高等諸多問(wèn)題。

  與傳統(tǒng)的鉆石劃片方式相比,紫外(UV)二極管泵浦固體(DPSS)激光劃片方式的芯片成品率和晶圓產(chǎn)量大幅增加,并且LED晶圓的亮度沒(méi)有明顯損耗。短波長(zhǎng)激光在氮化鎵和藍(lán)寶石層的吸收率都增加了,這樣可以降低劃片所需的輻射光功率,同時(shí)減小了切口寬度。

  劃片寬度、速度和加工產(chǎn)量是保持低加工成本與晶圓高產(chǎn)量的主要參數(shù)。JPSA已開(kāi)發(fā)出一種專(zhuān)利的光束傳輸系統(tǒng),該系統(tǒng)可以獲得很狹窄的2.5微米切口寬度(圖5),并提供特有的表面保護(hù)液以盡量減少碎片。在聚焦的激光束下方移動(dòng)晶圓進(jìn)行一次非常狹窄的V形切割,從外延面開(kāi)始擴(kuò)展到藍(lán)寶石層,通常劃片深度為20到30微米。激光劃片之后,用標(biāo)準(zhǔn)的裂片機(jī)在V形激光切縫處集中應(yīng)力進(jìn)行裂片加工。

 

#p#分頁(yè)標(biāo)題#e#
圖5. 氮化鎵-藍(lán)寶石晶圓激光劃片的切口寬度2.5微米。

  266nm激光正切劃片的切口寬度越窄,每片晶圓生產(chǎn)的可用芯片數(shù)目就越多,從而可以增加加工總產(chǎn)量。

  可以用普通的2英寸直徑、250 × 250微米芯片的藍(lán)光LED藍(lán)寶石晶圓做一個(gè)簡(jiǎn)單的比較。用傳統(tǒng)的鉆石劃片的切割劃道寬度通常為50微米(300微米芯片間距),這樣每片晶圓上大約有22,500粒芯片。傳統(tǒng)鉆石劃片的成品率通常為百分之九十,即每片晶圓上可用的芯片數(shù)為20,250。

采用紫外激光劃片,劃道寬度可以減少到20微米(270微米芯片間距),這樣每片晶圓上芯片數(shù)量增加到27,800左右(增了百分之二十三)。隨著成品率增加,這種方式得到的可用芯片數(shù)約為27,500,這樣每片晶圓的可用芯片數(shù)總共增加了百分之三十五。

  自1996年以來(lái),JPSA一直采用266nm的DPSS激光器對(duì)藍(lán)光LED藍(lán)寶石晶圓的氮化鎵正面進(jìn)行劃片,正切劃片速度可達(dá)150 mm/s,這樣每小時(shí)可加工大約15片晶圓(標(biāo)準(zhǔn)的2英寸直徑晶圓,芯片尺寸350× 350微米)。這種方式的產(chǎn)量高,對(duì)LED性能的影響小,允許晶圓翹曲,比傳統(tǒng)機(jī)械方式的劃片速度要快得多。

碳化硅(SiC)劃片

  除了藍(lán)寶石之外,碳化硅也可以用來(lái)作為藍(lán)光LED薄片的外延生長(zhǎng)基板。266nm和355nm紫外DPSS激光器(帶隙能量分別為4.6 eV和3.5 eV)可用于碳化硅(帶隙能量為2.8 eV)劃片。因?yàn)楣庾幽芰亢芨撸鰪?qiáng)了耦合效率,便于進(jìn)行高速劃片與裂片。氮化鎵與氮化鋁等III族氮化物厚片也可使用紫外DPSS激光器進(jìn)行劃片。200到400微米厚的氮化鎵或氮化鋁的劃片速度相比藍(lán)寶石或碳化硅上外延薄片的劃片速度要明顯降低,但是其劃片質(zhì)量?jī)?yōu)良,裂片簡(jiǎn)便。

  對(duì)于垂直結(jié)構(gòu)的高功率LED,激光剝離(LLO)工藝將藍(lán)寶石分離后,外延膜仍然與銅、銅鎢、鉬或硅等高導(dǎo)電率基板保持鍵合。對(duì)于硅晶圓,在300 mm/s、150 mm/s、100 mm/s的劃片速度時(shí)劃片深度分別為100μm、150μm和200μm。光束傳輸技術(shù)在一定的激光功率下保證了這些劃片速度/深度,并且減少了熱影響。金屬基板的晶圓劃片具有挑戰(zhàn)性,因?yàn)榻饘俚臒醾鲗?dǎo)率高,通常導(dǎo)致底焊效應(yīng)。此外,當(dāng)分離非常柔韌的材料時(shí)往往需要全切。JPSA已經(jīng)開(kāi)發(fā)了這些先進(jìn)的劃片技術(shù),可以成功的刻劃厚度高達(dá)200微米的基板,這對(duì)于高亮度LED產(chǎn)業(yè)極其重要。

 

 


圖6. LED藍(lán)寶石對(duì)紫外激光的吸收曲線。

雙面劃片功能

  355nm的DPSS激光器可以從LED的藍(lán)寶石面進(jìn)行背切劃片??梢允褂枚鄠€(gè)檢測(cè)相機(jī)從正面或背面進(jìn)行晶圓對(duì)準(zhǔn)操作,當(dāng)藍(lán)寶石有金屬反射層時(shí)這一點(diǎn)很重要。此外,外延層沒(méi)有直接接受激光輻射,可以降低光損。355nm波長(zhǎng)的激光相對(duì)于266nm激光被藍(lán)寶石吸收的效率要低(圖6)。因此,通常需要更高的功率,從而導(dǎo)致更大的切口寬度和劃道寬度。此外,背切劃片只適用于厚度<150微米的藍(lán)寶石晶圓,而正切劃片還可以適用于厚度更大的晶圓,劃片后可對(duì)晶圓研磨使其厚度變薄到裂片所需的最終厚度。


圖7. 355nm二極管泵浦固體激光器對(duì)氮化鎵晶圓的藍(lán)寶石面進(jìn)行背切劃片的截面圖。

  JPSA通過(guò)持續(xù)研發(fā)背切劃片的激光吸收增強(qiáng)等新技術(shù),實(shí)現(xiàn)了劃片速度高達(dá)150mm/s的高產(chǎn)量背切劃片,無(wú)碎片并且不損壞外延層(圖7)。

III-V族半導(dǎo)體晶圓劃片

  使用紫外DPSS激光器還可以將砷化鎵(GaAs)、磷化銦(InP)、磷化鎵(GaP)晶圓的易碎化合物半導(dǎo)體材料進(jìn)行分離,可以進(jìn)行快速精確、整齊清潔的劃片,切口寬度約3微米,對(duì)III-V材料無(wú)崩邊(圖8)。通常情況下,250微米厚的晶圓劃片速度在300mm/s,并且適合裂片(圖9)。III - V族晶片價(jià)格較貴,所以晶圓基板不能浪費(fèi)。紫外激光劃片越緊湊、越清潔、切口越窄,每片晶圓的芯片數(shù)就越多,與傳統(tǒng)鋸片切割法相比損壞的芯片數(shù)更少,成品率就越高。


圖8. 砷化鎵晶片劃片后的邊緣清潔并且清晰。


圖9. 磷化鎵晶圓劃片速度300 mm/s,劃片深度30 μm,深度足夠使250 μm厚的晶圓裂片。

展望

  LED技術(shù)因?yàn)樽非蟾叩男屎透偷闹圃斐杀?,其發(fā)展日新月異。這種“綠色”技術(shù)無(wú)疑具有光明的未來(lái),但是也面臨著很多挑戰(zhàn)。

  目前全球?qū)τ贚ED的需求急速增長(zhǎng),這就要求有新的激光加工工藝與技術(shù)來(lái)獲得更高的生產(chǎn)品質(zhì),更高的成品率和產(chǎn)量。除了激光系統(tǒng)的不斷發(fā)展,新的加工技術(shù)和應(yīng)用,光束傳輸與光學(xué)系統(tǒng)的改進(jìn),激光光束與材料之間相互作用的新研究,這些都是要保持這個(gè)綠色技術(shù)革新能夠繼續(xù)前進(jìn)所必須的。

  設(shè)備工程師面臨的挑戰(zhàn)是要建立靈活的操作工具。自動(dòng)盒式裝卸功能、邊緣檢測(cè)功能和自動(dòng)聚焦功能等選項(xiàng)實(shí)現(xiàn)了最先進(jìn)的激光劃片解決方案。JPSA公司持續(xù)研發(fā)激光前沿技術(shù),以滿足LED制造業(yè)的市場(chǎng)需求。(作者:Jeffrey P. Sercel )
 

 

轉(zhuǎn)載請(qǐng)注明出處。

暫無(wú)關(guān)鍵詞
免責(zé)聲明

① 凡本網(wǎng)未注明其他出處的作品,版權(quán)均屬于激光制造網(wǎng),未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用。獲本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使 用,并注明"來(lái)源:激光制造網(wǎng)”。違反上述聲明者,本網(wǎng)將追究其相關(guān)責(zé)任。
② 凡本網(wǎng)注明其他來(lái)源的作品及圖片,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本媒贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),版權(quán)歸原作者所有,如有侵權(quán)請(qǐng)聯(lián)系我們刪除。
③ 任何單位或個(gè)人認(rèn)為本網(wǎng)內(nèi)容可能涉嫌侵犯其合法權(quán)益,請(qǐng)及時(shí)向本網(wǎng)提出書(shū)面權(quán)利通知,并提供身份證明、權(quán)屬證明、具體鏈接(URL)及詳細(xì)侵權(quán)情況證明。本網(wǎng)在收到上述法律文件后,將會(huì)依法盡快移除相關(guān)涉嫌侵權(quán)的內(nèi)容。

網(wǎng)友點(diǎn)評(píng)
0相關(guān)評(píng)論
精彩導(dǎo)讀