1. 引言
高功率半導體激光器系統作為發(fā)展成熟的激光光源,在材料加工和固體激光器泵浦領域具有廣泛應用。盡管高功率半導體具備轉換效率高、功率高、可靠性強、壽命長、體積小以及成本低等諸多優(yōu)點,但是光譜亮度相對較差則是一個不容忽視的缺點。半導體激光器bar條典型的光譜帶寬大約是3~6nm,而且峰值波長會受工作電流和工作溫度的影響而發(fā)生漂移。
通常,摻釹固體晶體是對其相對較寬的808nm吸收帶進行泵浦,標準的半導體激光器系統能很容易地滿足808nm泵浦的光譜要。但是在過去幾年里,隨著半導體激光器bar條的工作電流和功率的不斷提高,導致在從閾值電流上升到工作電流的過程中產生了更大的波長漂移。為了確保在整個工作范圍內實現穩(wěn)定、有效的泵浦,需要控制泵浦半導體激光器的光譜,使其光譜帶寬始終與激活激光介質的吸收帶寬相匹配。
另一方面,光纖激光器的迅速發(fā)展,也增加了對其他波長的泵浦源的需求。例如,泵浦波長為1080nm左右的標準摻鐿光纖激光器,就需要915nm、940nm和980nm的光纖耦合半導體激光器系統,特別是980nm泵浦區(qū)尤為重要,因為摻鐿材料在該泵浦區(qū)具有較高的吸收系數和較窄的吸收帶寬。
另一個新的泵浦波長是在888nm泵浦Nd:YVO4,與808nm泵浦相比,888nm泵浦的優(yōu)勢在于該波長處于各向同性吸收區(qū),即在所有偏振方向上具有相同的吸收系數,并且量子虧損小。[1]
對于光譜線寬要求最高的應用之一是堿金屬蒸汽激光器(如銣或銫)的光泵浦,這類應用需要的線寬大約為10GHz。對于這些應用,要實現有效泵浦,控制半導體激光器泵浦源的光譜。[2]
由多個半導體激光器bar條構成的高功率半導體激光器系統的另一缺點在于相對較差的光束質量和亮度B,公式(1)是B的定義。半導體激光器光束的亮度由激光功率P以及慢軸和快軸方向上的光束參數乘積(BPP)a所確定。[3]
普通大面積半導體激光器bar條的輸出光束是由對于光束尺寸和發(fā)散角高度非對稱的參數來表征的??燧S方向上的光束質量約為1mm•mrad,接近衍射極限;然而,標準10mm大面積半導體激光器bar條慢軸方向上的光束質量在400~500mm•mrad之間,遠遠超過了衍射極限。
最近幾年中,通過增加每個發(fā)射體的輸出功率和減小慢軸發(fā)散角,半導體激光器bar條的亮度已經得到了顯著提高。這些進展帶來了發(fā)射體數量減少、發(fā)射體間距增加的新型半導體激光器設計。這些迷你bar條比傳統的10mm大面積半導體激光器bar條更具優(yōu)勢。[4]
半導體激光器系統亮度的進一步增強是通過偏振耦合和波長復用實現的。偏振耦合僅能將亮度提高一個單位系數的兩倍,而波長復用技術受可用波長數量n的限制。 事實上,波長復用進行功率擴展是以犧牲光譜亮度為代價。
標準半導體激光器光源的波長復用,以及基于非介質膜的波長耦合器,需要大約30nm的光譜寬度。通過使用具有穩(wěn)定的窄帶發(fā)射光譜的半導體激光源和體全息光柵作為組合單元,光譜距離可以顯著縮減到3nm。[5]結果,對于給定的光譜范圍,能夠被復用的半導體激光器bar條的數量增加,進而使亮度增強。
光譜穩(wěn)定的半導體激光器模塊更大的優(yōu)點是其對工作溫度和工作電流的敏感性降低,從而使冷卻系統更加簡便。另外,其對于芯片材料的規(guī)格要求也降低了,提高了生產中的晶圓利用率;而且還消除了隨著半導體激光器工作時間增加而引起的波長變化(“紅移”)。然而,應該指出的是,所有這些優(yōu)點的獲得要取決于體全息光柵的鎖定范圍。#p#分頁標題#e#
下面將介紹不同的波長穩(wěn)定技術。
2. 波長穩(wěn)定的基本概念
2.1波長穩(wěn)定的方法
在過去,為了改善半導體激光器bar條的光譜亮度,研究人員探討了一些不同的方法。這些方法可分為激光器內部和外部解決方案。內部解決方案將波長穩(wěn)定結構集成到半導體激光器bar條內部,而外部解決方案則是將體全息光柵與布拉格光柵分開,以穩(wěn)定波長。
分布式反饋半導體激光器(DFB)是采用內部波長穩(wěn)定解決方案的一個典型例子,用于選擇性光譜反饋的光柵被集成在激光器bar條的激活區(qū)結構中。這樣,波長隨溫度的漂移指標將減少到大約0.08nm/K,光譜帶寬將減少到小于1nm。[6,7,8]很明顯,這種DFB-半導體激光器的制造過程更為復雜,導致成本增加。這種激光器的另一個缺點是效率降低。
除了內部波長穩(wěn)定方案,研究人員還探討了通過外部元件實現波長穩(wěn)定的解決方案。外部波長穩(wěn)定元件的一個例子是基于光熱折變(PTR)無機玻璃的厚體光柵。這種光柵通過紫外光照射下折射率的周期性變化,實現在這種感光玻璃內記錄高效布拉格光柵。市場上有不同廠商出售這種體衍射光柵,只是名字稍有不同,如體布拉格光柵(VBG)[9]、體全息光柵(VHG)[10],或是體布拉格光柵激光器(VOBLA)[11]。
與內部解決方案相反,外部波長穩(wěn)定不需要對芯片結構做任何修改,也就是說,通過外部體全息光柵就能夠對標準大面積半導體激光器bar條進行波長穩(wěn)定。這是外部解決方案的一個重要優(yōu)勢。此外,與內部解決方案相比,外部波長穩(wěn)定方案能獲得更小的溫度漂移和光譜帶寬:溫度漂移能減少到約0.01nm/K,光譜寬度減小到小于0.3 nm。然而,外部波長穩(wěn)定方案的一個重要缺點是需要敏感和高度對準的VHG。
圖1所示的是采用外部波長穩(wěn)定方案的半導體激光器bar條的典型組成。VHG的角度敏感性有利于減少半導體激光器bar條的發(fā)散,特別是在快軸方向上利用快軸準直透鏡(FAC)來準直光束。VHG將顯著提高光學反饋。VHG直接置于FAC之后。圖1中的表格所示的是有效波長穩(wěn)定所需的典型對準公差。
圖1:采用波長穩(wěn)定方案的半導體激光器bar條的典型組成,VHG直接置于快軸準直透鏡(FAC)之后。表中給出了圖中所示組成的典型對準公差。
Typical tolerances for rotation:典型旋轉公差
x-axis:x軸;y-axis:y軸;z-axis:z軸
2.2 半導體激光器參數對外部波長穩(wěn)定性能的影響
為了獲得有效、穩(wěn)定的波長穩(wěn)定方案,必須對半導體激光器bar條的相關參數進行仔細控制,這些參數包括輸出面增透膜的反射率、發(fā)射體結構、腔長、smile效應、角度發(fā)射特性以及安裝技術等,這些參數將影響波長隨工作電流和工作溫度的漂移。
通過折射率調制、改變空間頻率和厚度,可以優(yōu)化VHG的性能。這三個獨立的參數決定布拉格角、衍射效率、光柵的光譜和角度選擇性。原則上,對于每種配置,這些VHG參數都必須分別優(yōu)化。然而根據經驗,對于大多數常用的半導體激光器bar條,VHG反射率約為20%。當然,與沒有采用波長穩(wěn)定方案的半導體bar條相比,對于給定的電流,采用波長穩(wěn)定方案的bar條因為插入了一個VHG,將會導致輸出功率有所下降。具有更高反射率的VHG將增加鎖定范圍,代價是更高的功率損耗。這意味著波長穩(wěn)定的優(yōu)化始終需要在鎖定范圍和功率損耗間進行權衡。此外,重要的是要注意到最佳反射率的選取也視應用需求而定。對于某些應用,VHG需要優(yōu)化以得到大的鎖定范圍,而對于固定工作條件的應用,則可能要求較低的損耗。#p#分頁標題#e#
前面提到,最常見的外部波長穩(wěn)定方案是將一個單獨的塊狀VHG直接置于快軸準直透鏡之后。這種布局的一個重要的缺點是對smile效應靈敏。由于smile效應,一些發(fā)射體不正好在光軸上,導致準直后產生偏轉角,最終導致反射光相對于發(fā)射體的初始位置的偏移(見圖2)。不在光軸上的發(fā)射體將接收到較少的光學反饋,如圖2中的右圖所示。
圖2. Smile效應對采用體全息光柵波長穩(wěn)定技術的半導體激光器bar條的光學反饋的影響
Off optical axis:偏離光軸
Onoptical axis:在光軸上
Diode bar with smile:具有smile效應的半導體激光器bar條
Reflected intensity:反射強度
Optical feedback by VHG:VHG的光學反饋
Optical axis:光軸
克服smile效應靈敏度的一種方法是將光柵結構集成到FAC中。[12]這樣的元件對smile效應和非準直并不敏感。由于未經準直的光束具有更大的發(fā)散角,加之光柵的小角度選擇性,因此只有一小部分光束被反射回半導體激光器腔內。在未準直或是存在smile效應的情況下,另外一部分光束將被反射用于提供反饋。與此相反,將光柵集成到FAC中,這種方案的一個理想情況是具備精確的準直且沒有smile效應,此時幾乎所有從VHG反射的光都被耦合至半導體激光器腔內。另一方面,這意味著要得到有效的波長鎖定,VHG-FAC的反射率需要大幅提高到70%。
集成VHG的FAC的更大的優(yōu)點是:只需要操作和調整一個獨立的元件。VHG-FAC的一個缺點是基于石英的PTR材料相對較低的折射率(n=1.45)。FAC通常是由S-TiH53 或 N-LAF21之類的高折射率材料制造的。如果使用折射率較低的材料,對于同樣的焦距,使用較小的曲率半徑,將會影響高數值孔徑工作條件下的透鏡像差。
參考文獻:
1. L. McDonagh et. al.; “High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm”; Optics Letters Vol. 31, pp. 3297 (2006)
2. A. Gourevitch et. al.; “Continuous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping”; Optics Letters Vol. 33, pp. 702 (2008)
3. Friedrich Bachmann, Peter Loosen, Reinhart Poprawe „High Power Diode Lasers“, pp.121-123, pp.162-174, Springer Series in Optical Sciences (2007)
4. M. Haag et. al.; “Novel high-brightness fiber coupled diode laser device”; Proc. SPIE Vol. 6456, 6456-28 (2007)
5. C. Wessling et. al.; “Dense wavelength multiplexing for a high power diode laser”; Proc. SPIE Vol. 6104, 6104-21 (2006)
6. M. Maiwald et. al.; “Reliable operation of 785 nm DFB diode lasers for rapid Raman spectroscopy”; Proc. SPIE Vol. 6456, 6456-0W (2007)
7. M. Kanskar et. al.; “High power conversion efficiency and wavelength-stabilized narrow bandwidth 975 nm diode laser pumps”; Proc. SPIE, Vol. 6216, 6216-09 (2006)
8. L. Vaissié et. al.; “High-power diode lasers advance pumping applications”; LASER FOCUS WORLD (June 2008)#p#分頁標題#e#
9. B.L. Volodin et. al.; ”Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings”; Optics Letters Vol. 29, pp. 1891 (2004)
10. C. Moser et. al.; “Filters to Bragg About”; Photonics Spectra, pp. 82 (June 2005)
11. G.B. Venus et. al.; “High-brightness narrow-line laser diode source with volume Bragg-grating feedback”; Proc. SPIE Vol. 5711, pp. 166 (2005)
12. C. Schnitzler et. al.; “Wavelength Stabilization of HPDL Array – Fast-Axis Collimation Optic with integrated VHG”; Proc. SPIE Vol. 6456, 6456-12 (2007)
轉載請注明出處。